BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30990439)

  • 1. Theoretical Analysis of AM and FM Interference Robustness of Integrating DDR Receiver for Human Body Communication.
    Maity S; Jiang X; Sen S
    IEEE Trans Biomed Circuits Syst; 2019 Jun; 13(3):566-578. PubMed ID: 30990439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-Physical Modeling, Characterization, and Optimization of Electro-Quasistatic Human Body Communication.
    Maity S; He M; Nath M; Das D; Chatterjee B; Sen S
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1791-1802. PubMed ID: 30403618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating on the Interferences on Human Body Communication System Induced by Other Wearable Devices.
    Mao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4044-4047. PubMed ID: 31946759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-the-Wild Interference Characterization and Modelling for Electro-Quasistatic-HBC With Miniaturized Wearables.
    Yang D; Mehrotra P; Weigand S; Sen S
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2858-2869. PubMed ID: 34010125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable health monitoring using capacitive voltage-mode Human Body Communication.
    Maity S; Das D; Sen S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1-4. PubMed ID: 29059795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Covert Body Area Network using Electro-Quasistatic Human Body Communication.
    Das D; Maity S; Chatterjee B; Sen S
    Sci Rep; 2019 Mar; 9(1):4160. PubMed ID: 30858385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Improved Update Rate CDR for Interference Robust Broadband Human Body Communication Receiver.
    Mehrotra P; Maity S; Sen S
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):868-879. PubMed ID: 31514152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Wireless human body communication technology].
    Sun L; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1389-93. PubMed ID: 25868265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Benefits of Creeping Wave Antennas in Reducing Interference Between Neighboring Wireless Body Area Networks.
    Tsouri GR; Zambito SR; Venkataraman J
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):153-160. PubMed ID: 27455528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Software Defined Radio Evaluation Platform for WBAN Systems.
    Wang J; Han K; Chen Z; Alexandridis A; Zilic Z; Pang Y; Lin J
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30572575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Biophysical Model to Capture Channel Variability for EQS Capacitive HBC.
    Datta A; Nath M; Yang D; Sen S
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3435-3446. PubMed ID: 33872142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey on Wireless Wearable Body Area Networks: A Perspective of Technology and Economy.
    Bhatti DS; Saleem S; Imran A; Iqbal Z; Alzahrani A; Kim H; Kim KI
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traffic Priority Based Channel Assignment Technique for Critical Data Transmission in Wireless Body Area Network.
    Ambigavathi M; Sridharan D
    J Med Syst; 2018 Sep; 42(11):206. PubMed ID: 30238165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Survey on LPWAN Technologies in WBAN for Remote Health-Care Monitoring.
    Olatinwo DD; Abu-Mahfouz A; Hancke G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication.
    Mao J; Yang H; Zhao B
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):910-919. PubMed ID: 28541910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Wearable Composite Antennas for Global Wireless Communication Systems.
    Zhang R; Liu J; Wang Y; Luo Z; Zhang B; Duan J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable ECG Based on Impulse-Radio-Type Human Body Communication.
    Wang J; Fujiwara T; Kato T; Anzai D
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1887-1894. PubMed ID: 26642315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility Analysis on the Use of Ultrasonic Communications for Body Sensor Networks.
    Li M; Kim YT
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30572584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Design of Switchable Wearable Antenna Array for Wireless Sensor Networks.
    Januszkiewicz Ł; Di Barba P; Hausman S
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32423090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges.
    Čuljak I; Lučev Vasić Ž; Mihaldinec H; Džapo H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.