These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 30990452)
1. LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices. Saadatnejad S; Oveisi M; Hashemi M IEEE J Biomed Health Inform; 2020 Feb; 24(2):515-523. PubMed ID: 30990452 [TBL] [Abstract][Full Text] [Related]
2. ECG Classification Algorithm Based on STDP and R-STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power Personal Wearable Devices. Amirshahi A; Hashemi M IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1483-1493. PubMed ID: 31647445 [TBL] [Abstract][Full Text] [Related]
3. Heart rate monitoring and therapeutic devices: A wavelet transform based approach for the modeling and classification of congestive heart failure. Kumar A; Komaragiri R; Kumar M ISA Trans; 2018 Aug; 79():239-250. PubMed ID: 29801924 [TBL] [Abstract][Full Text] [Related]
4. A Fast and Robust Non-Sparse Signal Recovery Algorithm for Wearable ECG Telemonitoring Using ADMM-Based Block Sparse Bayesian Learning. Cheng Y; Ye Y; Hou M; He W; Li Y; Deng X Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29937512 [TBL] [Abstract][Full Text] [Related]
5. Classification of Sleep Apnea Severity by Electrocardiogram Monitoring Using a Novel Wearable Device. Baty F; Boesch M; Widmer S; Annaheim S; Fontana P; Camenzind M; Rossi RM; Schoch OD; Brutsche MH Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31947905 [TBL] [Abstract][Full Text] [Related]
6. Research on fatigue identification methods based on low-load wearable ECG monitoring devices. Wang H; Han M; Avouka T; Chen R; Wang J; Wei R Rev Sci Instrum; 2023 Apr; 94(4):. PubMed ID: 38081271 [TBL] [Abstract][Full Text] [Related]
7. An analysis method for wearable electrocardiogram measurement based on non-orthogonal complex wavelet expansion. Shimauchi S; Eguchi K; Takeda T; Aoki R Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3973-3976. PubMed ID: 29060767 [TBL] [Abstract][Full Text] [Related]
8. REWARD: Design, Optimization, and Evaluation of a Real-Time Relative-Energy Wearable R-Peak Detection Algorithm Orlandic L; Giovanni E; Arza A; Yazdani S; Vesin JM; Atienza D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3341-3347. PubMed ID: 31946597 [TBL] [Abstract][Full Text] [Related]
9. Multiple functional ECG signal is processing for wearable applications of long-term cardiac monitoring. Liu X; Zheng Y; Phyu MW; Zhao B; Je M; Yuan X IEEE Trans Biomed Eng; 2011 Feb; 58(2):380-9. PubMed ID: 20679025 [TBL] [Abstract][Full Text] [Related]
11. A novel low-complexity digital filter design for wearable ECG devices. Asgari S; Mehrnia A PLoS One; 2017; 12(4):e0175139. PubMed ID: 28384272 [TBL] [Abstract][Full Text] [Related]
12. Multi-stage SVM approach for cardiac arrhythmias detection in short single-lead ECG recorded by a wearable device. Smisek R; Hejc J; Ronzhina M; Nemcova A; Marsanova L; Kolarova J; Smital L; Vitek M Physiol Meas; 2018 Sep; 39(9):094003. PubMed ID: 30102239 [TBL] [Abstract][Full Text] [Related]
13. A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System. Wang LH; Zhang W; Guan MH; Jiang SY; Fan MH; Abu PAR; Chen CA; Chen SL Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744095 [TBL] [Abstract][Full Text] [Related]
14. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications. Sodhro AH; Sangaiah AK; Sodhro GH; Lohano S; Pirbhulal S Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29558433 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Motion Artefact Reduction Methods and the Implementation of Adaptive Motion Artefact Reduction in Wearable Electrocardiogram Monitoring. An X; K Stylios G Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155984 [TBL] [Abstract][Full Text] [Related]
16. Comparison of neural basis expansion analysis for interpretable time series (N-BEATS) and recurrent neural networks for heart dysfunction classification. Puszkarski B; Hryniów K; Sarwas G Physiol Meas; 2022 Jun; 43(6):. PubMed ID: 35537407 [No Abstract] [Full Text] [Related]
17. Arrhythmia Evaluation in Wearable ECG Devices. Sadrawi M; Lin CH; Lin YT; Hsieh Y; Kuo CC; Chien JC; Haraikawa K; Abbod MF; Shieh JS Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29068369 [TBL] [Abstract][Full Text] [Related]
18. [A heart rate detection method for wearable electrocardiogram with the presence of motion interference]. Xie J; Gong Y; Wei L; Wang J; Li W; Li Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):764-773. PubMed ID: 34459177 [TBL] [Abstract][Full Text] [Related]
19. Energy-Efficient Intelligent ECG Monitoring for Wearable Devices. Wang N; Zhou J; Dai G; Huang J; Xie Y IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1112-1121. PubMed ID: 31329129 [TBL] [Abstract][Full Text] [Related]
20. Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM. Sharma A; Garg N; Patidar S; San Tan R; Acharya UR Comput Biol Med; 2020 May; 120():103753. PubMed ID: 32421653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]