These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 30990497)
1. Lattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: a DFT study. Li N; Meng Q; Zhu X; Li Z; Ma J; Huang C; Song J; Fan J Nanoscale; 2019 Apr; 11(17):8485-8493. PubMed ID: 30990497 [TBL] [Abstract][Full Text] [Related]
2. Covalent surface modification of bifunctional two-dimensional metal carbide MXenes as sulfur hosts for sodium-sulfur batteries. Li N; Zhan Y; Wu H; Fan J; Jia J Nanoscale; 2022 Nov; 14(45):17027-17035. PubMed ID: 36367049 [TBL] [Abstract][Full Text] [Related]
3. Sulfur-functionalized vanadium carbide MXene (V Wang Y; Shen J; Xu LC; Yang Z; Li R; Liu R; Li X Phys Chem Chem Phys; 2019 Aug; 21(34):18559-18568. PubMed ID: 31411206 [TBL] [Abstract][Full Text] [Related]
4. Theoretical identification of the superior anchoring effect and electrochemical performance of Ti Wang M; Mao J; Pang Y; Zhang X; Wang H; Yang Z; Lu Z; Yang S Phys Chem Chem Phys; 2023 Jul; 25(29):19795-19803. PubMed ID: 37449881 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional biphenylene: a promising anchoring material for lithium-sulfur batteries. Al-Jayyousi HK; Sajjad M; Liao K; Singh N Sci Rep; 2022 Mar; 12(1):4653. PubMed ID: 35301377 [TBL] [Abstract][Full Text] [Related]
6. CO Lee DK; Chae Y; Yun H; Ahn CW; Lee JW ACS Nano; 2020 Aug; 14(8):9744-9754. PubMed ID: 32806058 [TBL] [Abstract][Full Text] [Related]
7. Rationalizing Functionalized MXenes as Effective Anchor Materials for Lithium-Sulfur Batteries via First-Principles Calculations. Zhu X; Ge M; Sun T; Yuan X; Li Y J Phys Chem Lett; 2023 Mar; 14(8):2215-2221. PubMed ID: 36815743 [TBL] [Abstract][Full Text] [Related]
8. Two-dimensional square metal organic framework as promising cathode material for lithium-sulfur battery with high theoretical energy density. Chen D; Mukherjee S; Zhang C; Li Y; Xiao B; Singh CV J Colloid Interface Sci; 2022 May; 613():435-446. PubMed ID: 35042041 [TBL] [Abstract][Full Text] [Related]
9. A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs. Wang H; Jing Z; Liu H; Feng X; Meng G; Wu K; Cheng Y; Xiao B Nanoscale; 2020 Dec; 12(48):24510-24526. PubMed ID: 33320160 [TBL] [Abstract][Full Text] [Related]
10. Effective Screening Descriptor for MXenes to Enhance Sulfur Reduction in Lithium-Sulfur Batteries. Fang M; Han J; He S; Ren JC; Li S; Liu W J Am Chem Soc; 2023 Jun; 145(23):12601-12608. PubMed ID: 37276342 [TBL] [Abstract][Full Text] [Related]
11. Carbon Nitride Phosphorus as an Effective Lithium Polysulfide Adsorbent for Lithium-Sulfur Batteries. Do V; Deepika ; Kim MS; Kim MS; Lee KR; Cho WI ACS Appl Mater Interfaces; 2019 Mar; 11(12):11431-11441. PubMed ID: 30874419 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li-S batteries. Mukherjee S; Kavalsky L; Chattopadhyay K; Singh CV Nanoscale; 2018 Dec; 10(45):21335-21352. PubMed ID: 30426120 [TBL] [Abstract][Full Text] [Related]
13. Rational Design of TiO-TiO Chen G; Zhong W; Li Y; Deng Q; Ou X; Pan Q; Wang X; Xiong X; Yang C; Liu M ACS Appl Mater Interfaces; 2019 Feb; 11(5):5055-5063. PubMed ID: 30656928 [TBL] [Abstract][Full Text] [Related]
14. Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries. Hou TZ; Chen X; Peng HJ; Huang JQ; Li BQ; Zhang Q; Li B Small; 2016 Jun; 12(24):3283-91. PubMed ID: 27168000 [TBL] [Abstract][Full Text] [Related]
15. Transition metal decorated phthalocyanine as a potential host material for lithium polysulfides: a first-principles study. Xia J; Cao R; Wu Q RSC Adv; 2022 May; 12(22):13975-13984. PubMed ID: 35558832 [TBL] [Abstract][Full Text] [Related]
16. A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti Wang D; Li F; Lian R; Xu J; Kan D; Liu Y; Chen G; Gogotsi Y; Wei Y ACS Nano; 2019 Oct; 13(10):11078-11086. PubMed ID: 31469546 [TBL] [Abstract][Full Text] [Related]
17. Effect of lithium-trapping on nitrogen-doped graphene as an anchoring material for lithium-sulfur batteries: a density functional theory study. Yi GS; Sim ES; Chung YC Phys Chem Chem Phys; 2017 Oct; 19(41):28189-28194. PubMed ID: 29022977 [TBL] [Abstract][Full Text] [Related]
18. Application of MXene-Based Materials for Cathode in Lithium-Sulfur Batteries. Geng X; Yang L; Song P Chemistry; 2024 Mar; 30(13):e202303451. PubMed ID: 38050760 [TBL] [Abstract][Full Text] [Related]
19. A nitrogen-rich two dimensional covalent organic framework with multiple carbonyls as a highly efficient anchoring material for lithium-sulfur batteries. Das P; Sarkar P Phys Chem Chem Phys; 2023 Nov; 25(44):30536-30542. PubMed ID: 37929640 [TBL] [Abstract][Full Text] [Related]
20. Group IV Monochalcogenides MX (M=Ge, Sn; X=S, Se) as Chemical Anchors of Polysulfides for Lithium-Sulfur Batteries. Lv X; Wei W; Yang H; Li J; Huang B; Dai Y Chemistry; 2018 Aug; 24(43):11193-11199. PubMed ID: 29797539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]