These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30990504)

  • 1. Thermal transport through fishbone silicon nanoribbons: unraveling the role of Sharvin resistance.
    Yang L; Zhao Y; Zhang Q; Yang J; Li D
    Nanoscale; 2019 Apr; 11(17):8196-8203. PubMed ID: 30990504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM; Pereira LFC
    Sci Rep; 2018 Feb; 8(1):2737. PubMed ID: 29426893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.
    Yang L; Zhang Q; Cui Z; Gerboth M; Zhao Y; Xu TT; Walker DG; Li D
    Nano Lett; 2017 Dec; 17(12):7218-7225. PubMed ID: 29087722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity reduction in silicon fishbone nanowires.
    Maire J; Anufriev R; Hori T; Shiomi J; Volz S; Nomura M
    Sci Rep; 2018 Mar; 8(1):4452. PubMed ID: 29535335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of phonon coherence and backscattering using silicon nanomeshes.
    Lee J; Lee W; Wehmeyer G; Dhuey S; Olynick DL; Cabrini S; Dames C; Urban JJ; Yang P
    Nat Commun; 2017 Jan; 8():14054. PubMed ID: 28051081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excellent Thermoelectric Properties in monolayer WSe
    Wang J; Xie F; Cao XH; An SC; Zhou WX; Tang LM; Chen KQ
    Sci Rep; 2017 Jan; 7():41418. PubMed ID: 28120912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons.
    Xie G; Shen Y
    Phys Chem Chem Phys; 2015 Apr; 17(14):8822-7. PubMed ID: 25743638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane.
    Johnson JA; Maznev AA; Cuffe J; Eliason JK; Minnich AJ; Kehoe T; Torres CM; Chen G; Nelson KA
    Phys Rev Lett; 2013 Jan; 110(2):025901. PubMed ID: 23383915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal transport characterization of carbon and silicon doped stanene nanoribbon: an equilibrium molecular dynamics study.
    Navid IA; Subrina S
    RSC Adv; 2018 Sep; 8(55):31690-31699. PubMed ID: 35548196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon Conduction in Silicon Nanobeam Labyrinths.
    Park W; Romano G; Ahn EC; Kodama T; Park J; Barako MT; Sohn J; Kim SJ; Cho J; Marconnet AM; Asheghi M; Kolpak AM; Goodson KE
    Sci Rep; 2017 Jul; 7(1):6233. PubMed ID: 28740212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ballistic to diffusive crossover of heat flow in graphene ribbons.
    Bae MH; Li Z; Aksamija Z; Martin PN; Xiong F; Ong ZY; Knezevic I; Pop E
    Nat Commun; 2013; 4():1734. PubMed ID: 23591901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices.
    Chen W; Talreja D; Eichfeld D; Mahale P; Nova NN; Cheng HY; Russell JL; Yu SY; Poilvert N; Mahan G; Mohney SE; Crespi VH; Mallouk TE; Badding JV; Foley B; Gopalan V; Dabo I
    ACS Nano; 2020 Apr; 14(4):4235-4243. PubMed ID: 32223186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
    Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D
    ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.
    Xiong S; Sääskilahti K; Kosevich YA; Han H; Donadio D; Volz S
    Phys Rev Lett; 2016 Jul; 117(2):025503. PubMed ID: 27447516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires.
    Hsiao TK; Chang HK; Liou SC; Chu MW; Lee SC; Chang CW
    Nat Nanotechnol; 2013 Jul; 8(7):534-8. PubMed ID: 23812186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K.
    Lee S; Yang F; Suh J; Yang S; Lee Y; Li G; Sung Choe H; Suslu A; Chen Y; Ko C; Park J; Liu K; Li J; Hippalgaonkar K; Urban JJ; Tongay S; Wu J
    Nat Commun; 2015 Oct; 6():8573. PubMed ID: 26472285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat transfer through hydrogenated graphene superlattice nanoribbons: a computational study.
    Dehaghani MZ; Habibzadeh S; Farzadian O; Kostas KV; Saeb MR; Spitas C; Mashhadzadeh AH
    Sci Rep; 2022 May; 12(1):7966. PubMed ID: 35562417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.