These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 30990510)

  • 1. Ultra-long distance carrier transportation in bandgap-graded CdS
    Fan P; Liu H; Zhuang X; Zheng W; Ge C; Huang W; Yang X; Liu Y; Jiang Y; Zhu X; Pan A
    Nanoscale; 2019 Apr; 11(17):8494-8501. PubMed ID: 30990510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires probed by terahertz spectroscopy.
    Liu H; Lu J; Yang Z; Teng J; Ke L; Zhang X; Tong L; Sow CH
    Sci Rep; 2016 Jun; 6():27387. PubMed ID: 27263861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enabled by Built-in Halide Gradient.
    Tian W; Leng J; Zhao C; Jin S
    J Am Chem Soc; 2017 Jan; 139(2):579-582. PubMed ID: 28035829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-wire bandgap engineering via a magnetic-pulled CVD approach and optoelectronic applications of one-dimensional nanostructures.
    Shen X; Li P; Guo P; Yu KM
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35816940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition and bandgap-graded semiconductor alloy nanowires.
    Zhuang X; Ning CZ; Pan A
    Adv Mater; 2012 Jan; 24(1):13-33. PubMed ID: 22105863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters.
    Zhao C; Ebaid M; Zhang H; Priante D; Janjua B; Zhang D; Wei N; Alhamoud AA; Shakfa MK; Ng TK; Ooi BS
    Nanoscale; 2018 Aug; 10(34):15980-15988. PubMed ID: 29897082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of reliable semiconductor nanowires by controlling crystalline structure.
    Kim S; Lim T; Ju S
    Nanotechnology; 2011 Jul; 22(30):305704. PubMed ID: 21709348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial bandgap engineering along single alloy nanowires.
    Gu F; Yang Z; Yu H; Xu J; Wang P; Tong L; Pan A
    J Am Chem Soc; 2011 Feb; 133(7):2037-9. PubMed ID: 21271702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires.
    Yang Z; Wang D; Meng C; Wu Z; Wang Y; Ma Y; Dai L; Liu X; Hasan T; Liu X; Yang Q
    Nano Lett; 2014 Jun; 14(6):3153-9. PubMed ID: 24798020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale integration of semiconductor nanowires for high-performance flexible electronics.
    Liu X; Long YZ; Liao L; Duan X; Fan Z
    ACS Nano; 2012 Mar; 6(3):1888-900. PubMed ID: 22364279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation.
    Gu F; Zhang L; Yu H; Fang W; Bao J; Tong L
    Nanotechnology; 2011 Oct; 22(42):425201. PubMed ID: 21937788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface dominant photoresponse of multiferroic BiFeO3 nanowires under sub-bandgap illumination.
    Prashanthi K; Gaikwad R; Thundat T
    Nanotechnology; 2013 Dec; 24(50):505710. PubMed ID: 24284807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holistic Determination of Optoelectronic Properties using High-Throughput Spectroscopy of Surface-Guided CsPbBr3 Nanowires.
    Church SA; Choi H; Al-Amairi N; Al-Abri R; Sanders E; Oksenberg E; Joselevich E; Parkinson PW
    ACS Nano; 2022 Jun; 16(6):9086-9094. PubMed ID: 35584237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric light propagation in composition-graded semiconductor nanowires.
    Xu J; Zhuang X; Guo P; Huang W; Hu W; Zhang Q; Wan Q; Zhu X; Yang Z; Tong L; Duan X; Pan A
    Sci Rep; 2012; 2():820. PubMed ID: 23150783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-Energy Release in Bent Semiconductor Nanowires Occurring by Polygonization or Nanocrack Formation.
    Sun Z; Huang C; Guo J; Dong JT; Klie RF; Lauhon LJ; Seidman DN
    ACS Nano; 2019 Mar; 13(3):3730-3738. PubMed ID: 30807693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-bridge structure of CdSxSe₁-x nanowire-based optical sensors.
    Choi YJ; Park KS; Park JG
    Nanotechnology; 2010 Dec; 21(50):505605. PubMed ID: 21098942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1-xS nanowires on a single substrate: a design study.
    Caselli DA; Ning CZ
    Opt Express; 2011 Jul; 19 Suppl 4():A686-94. PubMed ID: 21747535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandgap engineering of Cd(x)Zn(1-x)Te nanowires.
    Davami K; Pohl J; Shaygan M; Kheirabi N; Faryabi H; Cuniberti G; Lee JS; Meyyappan M
    Nanoscale; 2013 Feb; 5(3):932-5. PubMed ID: 23299660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.