BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 30990672)

  • 1. Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds.
    Engelhardt FAS; Praetorius F; Wachauf CH; Brüggenthies G; Kohler F; Kick B; Kadletz KL; Pham PN; Behler KL; Gerling T; Dietz H
    ACS Nano; 2019 May; 13(5):5015-5027. PubMed ID: 30990672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.
    Chen X; Wang Q; Peng J; Long Q; Yu H; Li Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24344-24348. PubMed ID: 29989388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.
    Bush J; Singh S; Vargas M; Oktay E; Hu CH; Veneziano R
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prescribing DNA Origami Patterns via Scaffold Decoration.
    Zhang Y; Li Q; Liu X; Fan C; Liu H; Wang L
    Small; 2020 Apr; 16(16):e2000793. PubMed ID: 32227454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a novel phagemid to produce custom DNA origami scaffolds.
    Nafisi PM; Aksel T; Douglas SM
    Synth Biol (Oxf); 2018 Jan; 3(1):. PubMed ID: 30984875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding DNA Origami Design Freedom with De Novo Synthesized Scaffolds.
    Wu H; Zhang T; Qin Y; Xia X; Bai T; Gu H; Wei B
    J Am Chem Soc; 2024 Jun; 146(23):16076-16084. PubMed ID: 38803270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalizing DNA Origami by Triplex-Directed Site-Specific Photo-Cross-Linking.
    Kalra S; Donnelly A; Singh N; Matthews D; Del Villar-Guerra R; Bemmer V; Dominguez C; Allcock N; Cherny D; Revyakin A; Rusling DA
    J Am Chem Soc; 2024 May; 146(19):13617-13628. PubMed ID: 38695163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer-Integrated Scaffolds for Biologically Functional DNA Origami Structures.
    Chen X; Jia B; Lu Z; Liao L; Yu H; Li Z
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39711-39718. PubMed ID: 34402304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami.
    Rahbani JF; Hsu JCC; Chidchob P; Sleiman HF
    Nanoscale; 2018 Aug; 10(29):13994-13999. PubMed ID: 29995052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Pot Synthesis of Defined-Length ssDNA for Multiscaffold DNA Origami.
    Noteborn WEM; Abendstein L; Sharp TH
    Bioconjug Chem; 2021 Jan; 32(1):94-98. PubMed ID: 33307668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.
    Ong LL; Hanikel N; Yaghi OK; Grun C; Strauss MT; Bron P; Lai-Kee-Him J; Schueder F; Wang B; Wang P; Kishi JY; Myhrvold C; Zhu A; Jungmann R; Bellot G; Ke Y; Yin P
    Nature; 2017 Dec; 552(7683):72-77. PubMed ID: 29219968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold.
    Marchi AN; Saaem I; Tian J; LaBean TH
    ACS Nano; 2013 Feb; 7(2):903-10. PubMed ID: 23281627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward larger DNA origami.
    Marchi AN; Saaem I; Vogen BN; Brown S; LaBean TH
    Nano Lett; 2014 Oct; 14(10):5740-7. PubMed ID: 25179827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities.
    Wang J; Yue L; Li Z; Zhang J; Tian H; Willner I
    Nat Commun; 2019 Oct; 10(1):4963. PubMed ID: 31672967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid prototyping of 3D DNA-origami shapes with caDNAno.
    Douglas SM; Marblestone AH; Teerapittayanon S; Vazquez A; Church GM; Shih WM
    Nucleic Acids Res; 2009 Aug; 37(15):5001-6. PubMed ID: 19531737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Assembly of Super-DNA Origami Based on a Flexible and Covalent-Bound Branched DNA Structure.
    Li Y; Pei J; Lu X; Jiao Y; Liu F; Wu X; Liu J; Ding B
    J Am Chem Soc; 2021 Dec; 143(47):19893-19900. PubMed ID: 34783532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA origami: the art of folding DNA.
    Saccà B; Niemeyer CM
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):58-66. PubMed ID: 22162047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.