BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 30990769)

  • 1. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
    Barkau CL; O'Reilly D; Rohilla KJ; Damha MJ; Gagnon KT
    Nucleic Acid Ther; 2019 Jun; 29(3):136-147. PubMed ID: 30990769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coevolutionary Couplings Unravel PAM-Proximal Constraints of CRISPR-SpCas9.
    Li Y; De la Paz JA; Jiang X; Liu R; Pokkulandra AP; Bleris L; Morcos F
    Biophys J; 2019 Nov; 117(9):1684-1691. PubMed ID: 31648792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates.
    Moreb EA; Hutmacher M; Lynch MD
    CRISPR J; 2020 Dec; 3(6):550-561. PubMed ID: 33346713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA targeting by Clostridium cellulolyticum CRISPR-Cas9 Type II-C system.
    Fedorova I; Arseniev A; Selkova P; Pobegalov G; Goryanin I; Vasileva A; Musharova O; Abramova M; Kazalov M; Zyubko T; Artamonova T; Artamonova D; Shmakov S; Khodorkovskii M; Severinov K
    Nucleic Acids Res; 2020 Feb; 48(4):2026-2034. PubMed ID: 31943070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating CRISPR-Cas Genome Editing Using Guide-Complementary DNA Oligonucleotides.
    Swartjes T; Shang P; van den Berg DTM; Künne T; Geijsen N; Brouns SJJ; van der Oost J; Staals RHJ; Notebaart RA
    CRISPR J; 2022 Aug; 5(4):571-585. PubMed ID: 35856642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and Validation of Native and Engineered Cas9 Guide Sequences.
    Briner AE; Henriksen ED; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared with SpCas9 in Genome Editing.
    Yang ZX; Fu YW; Zhao JJ; Zhang F; Li SA; Zhao M; Wen W; Zhang L; Cheng T; Zhang JP; Zhang XB
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1206-1220. PubMed ID: 36549468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Regulation of Cas9-Mediated Genome Engineering by Anti-CRISPR-Based Inducible CRISPR Controllers.
    Jain S; Xun G; Abesteh S; Ho S; Lingamaneni M; Martin TA; Tasan I; Yang C; Zhao H
    ACS Synth Biol; 2021 Jun; 10(6):1320-1327. PubMed ID: 34006094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable characterization of the PAM requirements of CRISPR-Cas enzymes using HT-PAMDA.
    Walton RT; Hsu JY; Joung JK; Kleinstiver BP
    Nat Protoc; 2021 Mar; 16(3):1511-1547. PubMed ID: 33547443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR Guide RNA Design Guidelines for Efficient Genome Editing.
    Schindele P; Wolter F; Puchta H
    Methods Mol Biol; 2020; 2166():331-342. PubMed ID: 32710418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation.
    Zhang Q; Wen F; Zhang S; Jin J; Bi L; Lu Y; Li M; Xi XG; Huang X; Shen B; Sun B
    Sci Adv; 2019 Nov; 5(11):eaaw9807. PubMed ID: 31763447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structure-based optimization and design of CRISPR protein xCas9].
    Xue D; Zhu H; Du W; Tang H; Huang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1385-1395. PubMed ID: 33973451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems.
    Briner AE; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into a high fidelity variant of SpCas9.
    Guo M; Ren K; Zhu Y; Tang Z; Wang Y; Zhang B; Huang Z
    Cell Res; 2019 Mar; 29(3):183-192. PubMed ID: 30664728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.