These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

726 related articles for article (PubMed ID: 30990933)

  • 1. Recent Advances on Electrochemical Biosensing Strategies toward Universal Point-of-Care Systems.
    Dai Y; Liu CC
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12355-12368. PubMed ID: 30990933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.
    Wang YH; Huang KJ; Wu X
    Biosens Bioelectron; 2017 Nov; 97():305-316. PubMed ID: 28618367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of nucleic acids biosensors detection limit III.
    Zhang YY; Guillon FX; Griveau S; Bedioui F; Lazerges M; Slim C
    Anal Bioanal Chem; 2022 Jan; 414(2):943-968. PubMed ID: 34668044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: advances, challenges, and opportunities.
    Hashem A; Hossain MAM; Marlinda AR; Mamun MA; Sagadevan S; Shahnavaz Z; Simarani K; Johan MR
    Crit Rev Clin Lab Sci; 2022 May; 59(3):156-177. PubMed ID: 34851806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superparamagnetic nanoarchitectures for disease-specific biomarker detection.
    Masud MK; Na J; Younus M; Hossain MSA; Bando Y; Shiddiky MJA; Yamauchi Y
    Chem Soc Rev; 2019 Dec; 48(24):5717-5751. PubMed ID: 31720618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review.
    Wang Z; Yu R; Zeng H; Wang X; Luo S; Li W; Luo X; Yang T
    Mikrochim Acta; 2019 Jun; 186(7):405. PubMed ID: 31183569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects.
    Campuzano S; Yáñez-Sedeño P; Pingarrón JM
    Anal Bioanal Chem; 2019 Mar; 411(9):1791-1806. PubMed ID: 30074089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleic acid-based electrochemical biosensors.
    Gunasekaran BM; Srinivasan S; Ezhilan M; Nesakumar N
    Clin Chim Acta; 2024 Jun; 559():119715. PubMed ID: 38735514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoglobulin G-Based Steric Hindrance Assay for Protein Detection.
    Dai Y; Xu W; Liu CC
    ACS Sens; 2020 Jan; 5(1):140-146. PubMed ID: 31829564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.
    Mao X; Tian W; Hatton TA; Rutledge GC
    Anal Bioanal Chem; 2016 Feb; 408(5):1307-26. PubMed ID: 26650731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of electrochemical biosensors in clinical diagnosis.
    Monošík R; Stred'anský M; Šturdík E
    J Clin Lab Anal; 2012 Jan; 26(1):22-34. PubMed ID: 24833531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in electrochemical biosensors as point of care diagnostics in livestock health.
    Gattani A; Singh SV; Agrawal A; Khan MH; Singh P
    Anal Biochem; 2019 Aug; 579():25-34. PubMed ID: 31128087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform.
    Lin M; Song P; Zhou G; Zuo X; Aldalbahi A; Lou X; Shi J; Fan C
    Nat Protoc; 2016 Jul; 11(7):1244-63. PubMed ID: 27310264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifouling Strategies for Electrochemical Biosensing: Mechanisms and Performance toward Point of Care Based Diagnostic Applications.
    Russo MJ; Han M; Desroches PE; Manasa CS; Dennaoui J; Quigley AF; Kapsa RMI; Moulton SE; Guijt RM; Greene GW; Silva SM
    ACS Sens; 2021 Apr; 6(4):1482-1507. PubMed ID: 33765383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical DNAzyme-based biosensors for disease diagnosis.
    Pandey R; Lu Y; McConnell EM; Osman E; Scott A; Gu J; Hoare T; Soleymani L; Li Y
    Biosens Bioelectron; 2023 Mar; 224():114983. PubMed ID: 36640547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Anatomy of a Nonfaradaic Electrochemical Biosensor.
    Stevenson H; Radha Shanmugam N; Paneer Selvam A; Prasad S
    SLAS Technol; 2018 Feb; 23(1):5-15. PubMed ID: 29095669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-based electrochemical biosensors: an alternative for point-of-care diagnostics?
    Wachholz Junior D; Kubota LT
    Talanta; 2024 Oct; 278():126467. PubMed ID: 38968657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis.
    Mohan R; Mach KE; Bercovici M; Pan Y; Dhulipala L; Wong PK; Liao JC
    PLoS One; 2011; 6(10):e26846. PubMed ID: 22066011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal Dynamic DNA Assembly-Programmed Surface Hybridization Effect for Single-Step, Reusable, and Amplified Electrochemical Nucleic Acid Biosensing.
    Liu S; Fang L; Wang Y; Wang L
    Anal Chem; 2017 Mar; 89(5):3108-3115. PubMed ID: 28194961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.