BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30990934)

  • 1. The role of C-terminal extensions in controlling ECF σ factor activity in the widely conserved groups ECF41 and ECF42.
    Wu H; Liu Q; Casas-Pastor D; Dürr F; Mascher T; Fritz G
    Mol Microbiol; 2019 Aug; 112(2):498-514. PubMed ID: 30990934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Widely Distributed Novel ECF42 Group of Extracytoplasmic Function σ Factors in Streptomyces venezuelae.
    Liu Q; Pinto D; Mascher T
    J Bacteriol; 2018 Nov; 200(21):. PubMed ID: 30126941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoter Recognition by Extracytoplasmic Function σ Factors: Analyzing DNA and Protein Interaction Motifs.
    Guzina J; Djordjevic M
    J Bacteriol; 2016 Jul; 198(14):1927-1938. PubMed ID: 27137497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ECF σ factors with regulatory extensions: the one-component systems of the σ universe.
    Pinto D; Liu Q; Mascher T
    Mol Microbiol; 2019 Aug; 112(2):399-409. PubMed ID: 31175685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fused SnoaL_2 domain in the Mycobacterium tuberculosis sigma factor σJ modulates promoter recognition.
    Goutam K; Gupta AK; Gopal B
    Nucleic Acids Res; 2017 Sep; 45(16):9760-9772. PubMed ID: 28934483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracytoplasmic function σ factors of the widely distributed group ECF41 contain a fused regulatory domain.
    Wecke T; Halang P; Staroń A; Dufour YS; Donohue TJ; Mascher T
    Microbiologyopen; 2012 Jun; 1(2):194-213. PubMed ID: 22950025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biophysical studies on two promoter recognition domains of the extra-cytoplasmic function sigma factor sigma(C) from Mycobacterium tuberculosis.
    Thakur KG; Joshi AM; Gopal B
    J Biol Chem; 2007 Feb; 282(7):4711-4718. PubMed ID: 17145760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the RsbN-σBldN complex from Streptomyces venezuelae defines a new structural class of anti-σ factor.
    Schumacher MA; Bush MJ; Bibb MJ; Ramos-León F; Chandra G; Zeng W; Buttner MJ
    Nucleic Acids Res; 2018 Aug; 46(14):7405-7417. PubMed ID: 29905823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of Streptomyces tsukubaensis sigma factor SigG1 and anti-sigma RsfG.
    Leite JP; Lourenço F; Oliveira R; Sousa SF; Mendes MV; Gales L
    J Struct Biol; 2023 Dec; 215(4):108038. PubMed ID: 37858875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors.
    Sineva E; Savkina M; Ades SE
    Curr Opin Microbiol; 2017 Apr; 36():128-137. PubMed ID: 28575802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the role of the two conserved motifs of the ECF41 family σ factor in the autoregulation of its own promoter in Azospirillum brasilense Sp245.
    Pathak E; Dubey AP; Singh VS; Mishra R; Tripathi AK
    Proteins; 2022 Nov; 90(11):1926-1943. PubMed ID: 35579112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family.
    Staroń A; Sofia HJ; Dietrich S; Ulrich LE; Liesegang H; Mascher T
    Mol Microbiol; 2009 Nov; 74(3):557-81. PubMed ID: 19737356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coevolutionary Analysis Reveals a Conserved Dual Binding Interface between Extracytoplasmic Function σ Factors and Class I Anti-σ Factors.
    Casas-Pastor D; Diehl A; Fritz G
    mSystems; 2020 Aug; 5(4):. PubMed ID: 32753504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of ECF-σ-factor-dependent transcription initiation.
    Lin W; Mandal S; Degen D; Cho MS; Feng Y; Das K; Ebright RH
    Nat Commun; 2019 Feb; 10(1):710. PubMed ID: 30755604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs.
    Burton SP; Burton ZF
    Transcription; 2014; 5(4):e967599. PubMed ID: 25483602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between the Rhodobacter sphaeroides ECF sigma factor, sigma(E), and its anti-sigma factor, ChrR.
    Anthony JR; Newman JD; Donohue TJ
    J Mol Biol; 2004 Aug; 341(2):345-60. PubMed ID: 15276828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C-terminal domain of M. tuberculosis ECF sigma factor I (SigI) interferes in SigI-RNAP interaction.
    Mallick Gupta A; Mandal S
    J Mol Model; 2020 Mar; 26(4):77. PubMed ID: 32180013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response.
    Allen MS; Hurst GB; Lu TY; Perry LM; Pan C; Lankford PK; Pelletier DA
    J Proteome Res; 2015 May; 14(5):2158-68. PubMed ID: 25853567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary couplings of amino acid residues reveal structure and function of bacterial signaling proteins.
    Szurmant H
    Mol Microbiol; 2019 Aug; 112(2):432-437. PubMed ID: 31102561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Past, Present, and Future of Extracytoplasmic Function σ Factors: Distribution and Regulatory Diversity of the Third Pillar of Bacterial Signal Transduction.
    Mascher T
    Annu Rev Microbiol; 2023 Sep; 77():625-644. PubMed ID: 37437215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.