These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30990970)

  • 1. Precise Patterning of Organic Semiconductor Crystals for Integrated Device Applications.
    Zhang X; Deng W; Jia R; Zhang X; Jie J
    Small; 2019 Jul; 15(27):e1900332. PubMed ID: 30990970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Semiconductor Single Crystal Arrays: Preparation and Applications.
    Zhao X; Zhang H; Zhang J; Liu J; Lei M; Jiang L
    Adv Sci (Weinh); 2023 May; 10(15):e2300483. PubMed ID: 36967565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications.
    Liu H; Liu D; Yang J; Gao H; Wu Y
    Small; 2023 Mar; 19(11):e2206938. PubMed ID: 36642796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise Patterning of Organic Single Crystals via Capillary-Assisted Alternating-Electric Field.
    Zhang Y; Jie J; Sun Y; Jeon SG; Zhang X; Dai G; Lee CJ; Zhang X
    Small; 2017 Jul; 13(25):. PubMed ID: 28509426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic Semiconductor Crystal Engineering for High-Resolution Layer-Controlled 2D Crystal Arrays.
    Chen Z; Duan S; Zhang X; Geng B; Xiao Y; Jie J; Dong H; Li L; Hu W
    Adv Mater; 2022 Jun; 34(22):e2104166. PubMed ID: 34416051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Semiconductor Single Crystals for Electronics and Photonics.
    Zhang X; Dong H; Hu W
    Adv Mater; 2018 Nov; 30(44):e1801048. PubMed ID: 30039629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning organic single-crystal transistor arrays.
    Briseno AL; Mannsfeld SC; Ling MM; Liu S; Tseng RJ; Reese C; Roberts ME; Yang Y; Wudl F; Bao Z
    Nature; 2006 Dec; 444(7121):913-7. PubMed ID: 17167482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterning technology for solution-processed organic crystal field-effect transistors.
    Li Y; Sun H; Shi Y; Tsukagoshi K
    Sci Technol Adv Mater; 2014 Apr; 15(2):024203. PubMed ID: 27877656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precisely Patterned Growth of Ultra-Long Single-Crystalline Organic Microwire Arrays for Near-Infrared Photodetectors.
    Wang H; Deng W; Huang L; Zhang X; Jie J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7912-8. PubMed ID: 26987110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli-Responsive Surface Ligands for Direct Lithography of Functional Inorganic Nanomaterials.
    Pan JA; Cho H; Coropceanu I; Wu H; Talapin DV
    Acc Chem Res; 2023 Sep; 56(17):2286-2297. PubMed ID: 37552212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterned growth of single-crystal 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanowire arrays for field-emission and optoelectronic devices.
    Pan H; Zhang X; Yang Y; Shao Z; Deng W; Ding K; Zhang Y; Jie J
    Nanotechnology; 2015 Jul; 26(29):295302. PubMed ID: 26135069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-assisted assembly of organic semiconducting single crystals on surfaces with patterned wettability.
    Liu S; Wang WM; Mannsfeld SC; Locklin J; Erk P; Gomez M; Richter F; Bao Z
    Langmuir; 2007 Jul; 23(14):7428-32. PubMed ID: 17547427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices.
    Yao Y; Zhang L; Leydecker T; Samorì P
    J Am Chem Soc; 2018 Jun; 140(22):6984-6990. PubMed ID: 29746772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dewetting-Induced Assembly Strategy for Precisely Patterning Organic Single Crystals in OFETs.
    Kan X; Xiao C; Li X; Su B; Wu Y; Jiang W; Wang Z; Jiang L
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18978-84. PubMed ID: 27377599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic ultrathin nanostructure arrays: materials, methods and applications.
    Wei Y; Geng Y; Wang K; Gao H; Wu Y; Jiang L
    Nanoscale Adv; 2022 May; 4(11):2399-2411. PubMed ID: 36134127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Area-selective growth of functional molecular architectures.
    Wang W; Chi L
    Acc Chem Res; 2012 Oct; 45(10):1646-56. PubMed ID: 22830409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.
    Liu Y; Duzhko VV; Page ZA; Emrick T; Russell TP
    Acc Chem Res; 2016 Nov; 49(11):2478-2488. PubMed ID: 27783502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Monolayers as Patterning Tool for Organic Electronic Devices.
    Schmaltz T; Sforazzini G; Reichert T; Frauenrath H
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28160336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Patterning of High-Mobility Semiconducting 2D Bi
    Wu J; Liu Y; Tan Z; Tan C; Yin J; Li T; Tu T; Peng H
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29024159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.