BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30991043)

  • 1. Carbonyl reductase sniffer from the model organism daphnia: Cloning, substrate determination and inhibitory sensitivity.
    Strehse JS; Protopapas N; Maser E
    Chem Biol Interact; 2019 Jul; 307():29-36. PubMed ID: 30991043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonyl reductases from Daphnia are regulated by redox cycling compounds.
    Ebert B; Ebert D; Koebsch K; Maser E; Kisiela M
    FEBS J; 2018 Aug; 285(15):2869-2887. PubMed ID: 29893480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonyl reduction of 4-oxonon-2-enal (4-ONE) by Sniffer from D. magna and D.pulex.
    Strehse JS; Hoffmann D; Protopapas N; Martin HJ; Maser E
    Chem Biol Interact; 2022 Feb; 354():109833. PubMed ID: 35085582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.
    Martin HJ; Ziemba M; Kisiela M; Botella JA; Schneuwly S; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):48-54. PubMed ID: 21167142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis.
    El-Hawari Y; Favia AD; Pilka ES; Kisiela M; Oppermann U; Martin HJ; Maser E
    Chem Biol Interact; 2009 Mar; 178(1-3):234-41. PubMed ID: 19061875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster.
    Sgraja T; Ulschmid J; Becker K; Schneuwly S; Klebe G; Reuter K; Heine A
    J Mol Biol; 2004 Oct; 342(5):1613-24. PubMed ID: 15364585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.
    O'connor T; Ireland LS; Harrison DJ; Hayes JD
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):487-504. PubMed ID: 10510318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of carbonyl reductase 1 (CR1) gene expression in Daphnia magna by TNT, but not its key metabolites 2-ADNT and 4-ADNT.
    Jacobsen J; Adomako-Bonsu AG; Maser E
    Chem Biol Interact; 2022 Jan; 351():109752. PubMed ID: 34801537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3.
    Staab CA; Hartmanová T; El-Hawari Y; Ebert B; Kisiela M; Wsol V; Martin HJ; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):95-103. PubMed ID: 21256830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.
    Botella JA; Ulschmid JK; Gruenewald C; Moehle C; Kretzschmar D; Becker K; Schneuwly S
    Curr Biol; 2004 May; 14(9):782-6. PubMed ID: 15120069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.
    Hara A; Endo S; Matsunaga T; El-Kabbani O; Miura T; Nishinaka T; Terada T
    Biochem Pharmacol; 2017 Aug; 138():185-192. PubMed ID: 28450226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human carbonyl reductases.
    Malátková P; Maser E; Wsól V
    Curr Drug Metab; 2010 Oct; 11(8):639-58. PubMed ID: 20942781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potent inhibition of human carbonyl reductase 1 (CBR1) by the prenylated chalconoid xanthohumol and its related prenylflavonoids isoxanthohumol and 8-prenylnaringenin.
    Seliger JM; Martin HJ; Maser E; Hintzpeter J
    Chem Biol Interact; 2019 May; 305():156-162. PubMed ID: 30849340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.
    Endo S; Matsunaga T; Matsumoto A; Arai Y; Ohno S; El-Kabbani O; Tajima K; Bunai Y; Yamano S; Hara A; Kitade Y
    Biochem Pharmacol; 2013 Nov; 86(9):1366-75. PubMed ID: 23994167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductases for carbonyl compounds in human liver.
    Nakayama T; Hara A; Yashiro K; Sawada H
    Biochem Pharmacol; 1985 Jan; 34(1):107-17. PubMed ID: 3881099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatic and biochemical characterization of DCXR and DHRS2/4 from Caenorhabditis elegans.
    Kisiela M; El-Hawari Y; Martin HJ; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):75-82. PubMed ID: 21300042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chinese hamster monomeric carbonyl reductases of the short-chain dehydrogenase/reductase superfamily.
    Miura T; Nishinaka T; Takama M; Murakami M; Terada T
    Chem Biol Interact; 2009 Mar; 178(1-3):110-6. PubMed ID: 18983989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.
    Endo S; Matsunaga T; Arai Y; Ikari A; Tajima K; El-Kabbani O; Yamano S; Hara A; Kitade Y
    Drug Metab Dispos; 2014 Apr; 42(4):803-12. PubMed ID: 24510382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and bacterial expression of monomeric short-chain dehydrogenase/reductase (carbonyl reductase) from CHO-K1 cells.
    Terada T; Sugihara Y; Nakamura K; Sato R; Inazu N; Maeda M
    Eur J Biochem; 2000 Dec; 267(23):6849-57. PubMed ID: 11082196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.