These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30991143)

  • 1. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions.
    Zorrilla S; Mónico A; Duarte S; Rivas G; Pérez-Sala D; Pajares MA
    Free Radic Biol Med; 2019 Nov; 144():203-217. PubMed ID: 30991143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein adductomics: A comprehensive analysis of protein modifications by electrophiles.
    Shibata T; Uchida K
    Free Radic Biol Med; 2019 Nov; 144():218-222. PubMed ID: 30853395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms?
    Domingues RM; Domingues P; Melo T; Pérez-Sala D; Reis A; Spickett CM
    J Proteomics; 2013 Oct; 92():110-31. PubMed ID: 23770299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein lipoxidation: Detection strategies and challenges.
    Aldini G; Domingues MR; Spickett CM; Domingues P; Altomare A; Sánchez-Gómez FJ; Oeste CL; Pérez-Sala D
    Redox Biol; 2015 Aug; 5():253-266. PubMed ID: 26072467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation.
    Spickett CM; Pitt AR
    Essays Biochem; 2020 Feb; 64(1):19-31. PubMed ID: 31867621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of bioactive nitrated lipids and nitro-lipid-protein adducts using mass spectrometry-based approaches.
    Melo T; Montero-Bullón JF; Domingues P; Domingues MR
    Redox Biol; 2019 May; 23():101106. PubMed ID: 30718106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Lipoxidation: Basic Concepts and Emerging Roles.
    Viedma-Poyatos Á; González-Jiménez P; Langlois O; Company-Marín I; Spickett CM; Pérez-Sala D
    Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33669164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein modifications by electrophilic lipoxidation products: adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification.
    Vasil'ev YV; Tzeng SC; Huang L; Maier CS
    Mass Spectrom Rev; 2014; 33(3):157-82. PubMed ID: 24818247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipoxidation and cancer immunity.
    Martín-Sierra C; Laranjeira P; Domingues MR; Paiva A
    Redox Biol; 2019 May; 23():101103. PubMed ID: 30658904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipoxidation in cardiovascular diseases.
    Gianazza E; Brioschi M; Fernandez AM; Banfi C
    Redox Biol; 2019 May; 23():101119. PubMed ID: 30833142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Hydrogen-Deuterium Exchange Mass Spectrometry to Examine Protein-Membrane Interactions.
    Vadas O; Jenkins ML; Dornan GL; Burke JE
    Methods Enzymol; 2017; 583():143-172. PubMed ID: 28063489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipoproteins as targets and markers of lipoxidation.
    Afonso CB; Spickett CM
    Redox Biol; 2019 May; 23():101066. PubMed ID: 30579928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S; García-Santamarina S; Hidalgo E
    Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A concise appraisal of lipid oxidation and lipoxidation in higher plants.
    Alché JD
    Redox Biol; 2019 May; 23():101136. PubMed ID: 30772285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced lipoxidation end products (ALEs) as RAGE binders: Mass spectrometric and computational studies to explain the reasons why.
    Mol M; Degani G; Coppa C; Baron G; Popolo L; Carini M; Aldini G; Vistoli G; Altomare A
    Redox Biol; 2019 May; 23():101083. PubMed ID: 30598328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of signaling pathways by functional interaction proteomics.
    von Kriegsheim A; Preisinger C; Kolch W
    Methods Mol Biol; 2008; 484():177-92. PubMed ID: 18592180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation.
    Yuan Q; Zhu X; Sayre LM
    Chem Res Toxicol; 2007 Jan; 20(1):129-39. PubMed ID: 17226935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of protein interactions in situ by proximity ligation assays.
    Koos B; Andersson L; Clausson CM; Grannas K; Klaesson A; Cane G; Söderberg O
    Curr Top Microbiol Immunol; 2014; 377():111-26. PubMed ID: 23921974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting protein-protein interactions/complex components using mass spectrometry coupled techniques.
    Ning Z; Hawley B; Chiang CK; Seebun D; Figeys D
    Methods Mol Biol; 2014; 1164():1-13. PubMed ID: 24927830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts.
    Colzani M; Aldini G; Carini M
    J Proteomics; 2013 Oct; 92():28-50. PubMed ID: 23597925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.