BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30991175)

  • 1. The unique features of non-competitive vs. competitive sorption: Tests against single volatile aromatic hydrocarbons and their quaternary mixtures.
    Samaddar P; Kim KH; Yip ACK; Zhang M; Szulejko JE; Khan A
    Environ Res; 2019 Jun; 173():508-516. PubMed ID: 30991175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive adsorption of gaseous aromatic hydrocarbons in a binary mixture on nanoporous covalent organic polymers at various partial pressures.
    Maitlo HA; Kim KH; Khan A; Szulejko JE; Kim JC; Song HN; Ahn WS
    Environ Res; 2019 Jun; 173():1-11. PubMed ID: 30884433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of figure of merit (FOM) for various materials in adsorptive removal of benzene under ambient temperature and pressure.
    Khan A; Szulejko JE; Kim KH; Sammadar P; Lee SS; Yang X; Ok YS
    Environ Res; 2019 Jan; 168():96-108. PubMed ID: 30296641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of inter-species swing adsorption between aromatic hydrocarbons.
    Vikrant K; Kim KH; Szulejko JE; Boukhvalov D; Shang J; Rinklebe J
    Environ Res; 2020 Feb; 181():108814. PubMed ID: 31784078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube sponges as an enrichment material for aromatic volatile organic compounds.
    Jang Y; Bang J; Seon YS; You DW; Oh JS; Jung KW
    J Chromatogr A; 2020 Apr; 1617():460840. PubMed ID: 31948724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the adsorption capacity for volatile organic compounds onto activated carbons by the Dubinin-Radushkevich-Langmuir model.
    Hung HW; Lin TF
    J Air Waste Manag Assoc; 2007 Apr; 57(4):497-506. PubMed ID: 17458469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling sorption isotherms of volatile organic chemical mixtures in model and natural solids.
    Li J; Werth CJ
    Environ Toxicol Chem; 2002 Jul; 21(7):1377-83. PubMed ID: 12109736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds.
    Jayawardhana Y; Gunatilake SR; Mahatantila K; Ginige MP; Vithanage M
    J Environ Manage; 2019 May; 238():323-330. PubMed ID: 30870672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions.
    Vellingiri K; Szulejko JE; Kumar P; Kwon EE; Kim KH; Deep A; Boukhvalov DW; Brown RJ
    Sci Rep; 2016 Jun; 6():27813. PubMed ID: 27324522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of diverse metal oxides in graphene composites on the adsorption isotherm of gaseous benzene.
    Khan A; Szulejko JE; Samaddar P; Kim KH; Eom W; Ambade SB; Han TH
    Environ Res; 2019 May; 172():367-374. PubMed ID: 30825687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of rice bran for the removal of selected organics from water: kinetic and thermodynamic investigations.
    Akhtar M; Bhanger MI; Iqbal S; Hasany SM
    J Agric Food Chem; 2005 Nov; 53(22):8655-62. PubMed ID: 16248568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on adsorption kinetic of aromatic hydrocarbons onto activated carbon in gaseous flow method.
    Kawasaki N; Kinoshita H; Oue T; Nakamura T; Tanada S
    J Colloid Interface Sci; 2004 Jul; 275(1):40-3. PubMed ID: 15158377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive adsorption of multicomponent volatile organic compounds on biochar.
    Rajabi H; Hadi Mosleh M; Prakoso T; Ghaemi N; Mandal P; Lea-Langton A; Sedighi M
    Chemosphere; 2021 Nov; 283():131288. PubMed ID: 34182650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood.
    Bornemann LC; Kookana RS; Welp G
    Chemosphere; 2007 Mar; 67(5):1033-42. PubMed ID: 17157349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-parameter empirical isotherm model: its application to sorption onto organoclays.
    Song DI; Shin WS
    Environ Sci Technol; 2005 Feb; 39(4):1138-43. PubMed ID: 15773487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling competitive adsorption of mixtures of volatile organic compounds in a fixed-bed of beaded activated carbon.
    Tefera DT; Hashisho Z; Philips JH; Anderson JE; Nichols M
    Environ Sci Technol; 2014 May; 48(9):5108-17. PubMed ID: 24670053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption potential of Moringa oleifera pods for the removal of organic pollutants from aqueous solutions.
    Akhtar M; Moosa Hasany S; Bhanger MI; Iqbal S
    J Hazard Mater; 2007 Mar; 141(3):546-56. PubMed ID: 16930826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape.
    Yang K; Sun Q; Xue F; Lin D
    J Hazard Mater; 2011 Nov; 195():124-31. PubMed ID: 21871718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using multi-walled carbon nanotubes (MWNTs) for oilfield produced water treatment with environmentally acceptable endpoints.
    Zaib Q; Aina OD; Ahmad F
    Environ Sci Process Impacts; 2014 Aug; 16(8):2039-47. PubMed ID: 24975808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar as low-cost sorbent of volatile fuel organic compounds: potential application to water remediation.
    Saiz-Rubio R; Balseiro-Romero M; Antelo J; Díez E; Fiol S; Macías F
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11605-11617. PubMed ID: 30484048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.