These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30991292)

  • 21. Using naturalistic driving study data to investigate the impact of driver distraction on driver's brake reaction time in freeway rear-end events in car-following situation.
    Gao J; Davis GA
    J Safety Res; 2017 Dec; 63():195-204. PubMed ID: 29203019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analyzing the effect of fog weather conditions on driver lane-keeping performance using the SHRP2 naturalistic driving study data.
    Das A; Ghasemzadeh A; Ahmed MM
    J Safety Res; 2019 Feb; 68():71-80. PubMed ID: 30876522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validity of failure-caused traffic conflicts as surrogates of rear-end collisions in naturalistic driving studies.
    Tarko AP; Lizarazo CG
    Accid Anal Prev; 2021 Jan; 149():105863. PubMed ID: 33189030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical older driver errors in a national sample of serious U.S. crashes.
    Cicchino JB; McCartt AT
    Accid Anal Prev; 2015 Jul; 80():211-9. PubMed ID: 25916662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multitasking additional-to-driving: Prevalence, structure, and associated risk in SHRP2 naturalistic driving data.
    Bálint A; Flannagan CAC; Leslie A; Klauer S; Guo F; Dozza M
    Accid Anal Prev; 2020 Mar; 137():105455. PubMed ID: 32036106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using trajectory-level SHRP2 naturalistic driving data for investigating driver lane-keeping ability in fog: An association rules mining approach.
    Das A; Ahmed MM; Ghasemzadeh A
    Accid Anal Prev; 2019 Aug; 129():250-262. PubMed ID: 31176145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using SHRP2 NDS data to examine infrastructure and other factors contributing to older driver crashes during left turns at signalized intersections.
    Zafian T; Ryan A; Agrawal R; Samuel S; Knodler M
    Accid Anal Prev; 2021 Jun; 156():106141. PubMed ID: 33873135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Safety critical event prediction through unified analysis of driver and vehicle volatilities: Application of deep learning methods.
    Arvin R; Khattak AJ; Qi H
    Accid Anal Prev; 2021 Mar; 151():105949. PubMed ID: 33385957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of teen and adult driver crash scenarios in a nationally representative sample of serious crashes.
    McDonald CC; Curry AE; Kandadai V; Sommers MS; Winston FK
    Accid Anal Prev; 2014 Nov; 72():302-8. PubMed ID: 25103321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance of basic kinematic thresholds in the identification of crash and near-crash events within naturalistic driving data.
    Perez MA; Sudweeks JD; Sears E; Antin J; Lee S; Hankey JM; Dingus TA
    Accid Anal Prev; 2017 Jun; 103():10-19. PubMed ID: 28371637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring microscopic driving volatility in naturalistic driving environment prior to involvement in safety critical events-Concept of event-based driving volatility.
    Wali B; Khattak AJ; Karnowski T
    Accid Anal Prev; 2019 Nov; 132():105277. PubMed ID: 31514087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of off-path glances: A quantitative analysis of rear-end conflicts involving Chinese professional truck drivers as the striking partners.
    Pipkorn L; Bianchi Piccinini G
    J Safety Res; 2020 Feb; 72():259-266. PubMed ID: 32199571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Built environment, driving errors and violations, and crashes in naturalistic driving environment.
    Ahmad N; Wali B; Khattak AJ; Dumbaugh E
    Accid Anal Prev; 2021 Jul; 157():106158. PubMed ID: 34030046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using naturalistic driving data to explore the association between traffic safety-related events and crash risk at driver level.
    Wu KF; Aguero-Valverde J; Jovanis PP
    Accid Anal Prev; 2014 Nov; 72():210-8. PubMed ID: 25086439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational modeling of driver pre-crash brake response, with and without off-road glances: Parameterization using real-world crashes and near-crashes.
    Svärd M; Markkula G; Bärgman J; Victor T
    Accid Anal Prev; 2021 Dec; 163():106433. PubMed ID: 34673380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Considering real-world sightline obstructions in crash and injury prevention estimates for left turn across path/opposite direction intersection active safety systems.
    Bareiss M; Gabler HC; Sherony R
    Traffic Inj Prev; 2020 Oct; 21(sup1):S102-S106. PubMed ID: 33026259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting crash-relevant violations at stop sign-controlled intersections for the development of an intersection driver assistance system.
    Scanlon JM; Sherony R; Gabler HC
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():59-65. PubMed ID: 27586104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Driver behavior analysis for right-turn drivers at signalized intersections using SHRP 2 naturalistic driving study data.
    Wu J; Xu H
    J Safety Res; 2017 Dec; 63():177-185. PubMed ID: 29203017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.