These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 30991323)
61. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors. Lei CN; Whang LM; Chen PC Chemosphere; 2010 Sep; 81(1):57-64. PubMed ID: 20705321 [TBL] [Abstract][Full Text] [Related]
62. Simultaneous removal of cationic and anionic heavy metal contaminants from electroplating effluent by hydrotalcite adsorbent with disulfide (S Zhou Y; Liu Z; Bo A; Tana T; Liu X; Zhao F; Sarina S; Jia M; Yang C; Gu Y; Zheng H; Zhu H J Hazard Mater; 2020 Jan; 382():121111. PubMed ID: 31563089 [TBL] [Abstract][Full Text] [Related]
63. Waste Valorization of a Recycled ZnCoFe Mixed Metal Oxide/Ceftriaxone Waste Layered Nanoadsorbent for Further Dye Removal. GadelHak Y; Salama E; Abd-El Tawab S; Mouhmed EA; Alkhalifah DHM; Hozzein WN; Mohaseb M; Mahmoud RK; Amin RM ACS Omega; 2022 Dec; 7(48):44103-44115. PubMed ID: 36506177 [TBL] [Abstract][Full Text] [Related]
64. A POSS-Phosphazene Based Porous Material for Adsorption of Metal Ions from Water. Soldatov M; Liu H Chem Asian J; 2019 Dec; 14(23):4345-4351. PubMed ID: 31651097 [TBL] [Abstract][Full Text] [Related]
65. Polymer-modified mesoporous silica microcubes (P@MSMCs) for the synergistic oxidative entrapment of Ag(i), Ti(iv), and Zn(ii) from natural river water. Jahan S; Salman M; Alias YB; Abu Bakar AFB; Mansoor F; Kanwal S Dalton Trans; 2020 Jun; 49(24):8265-8273. PubMed ID: 32463410 [TBL] [Abstract][Full Text] [Related]
66. Electrochemical heavy metal removal from water using PVC waste-derived N, S co-doped carbon materials. Chang Y; Dang Q; Samo I; Li Y; Li X; Zhang G; Chang Z RSC Adv; 2020 Jan; 10(7):4064-4070. PubMed ID: 35492671 [TBL] [Abstract][Full Text] [Related]
67. Chromoionophoric probe-anchored mesoporous silica nanospheres for rapid and reliable naked-eye detection of Ni(II) ions in petroleum products and removal from electroplating wastewater. Al-Bonayan AM; Alamrani NA; Ibarhiam SF; Alorabi AQ; Abumelha HM; Habeebullah TM; El-Metwaly NM J Mol Recognit; 2023 Jun; 36(6):e3013. PubMed ID: 36999889 [TBL] [Abstract][Full Text] [Related]
68. Synthesis of highly-efficient photocatalyst for visible- light-driven hydrogen evolution by recycling of heavy metal ions in wastewater. Wang M; Yao H; Zhang L; Zhou X J Hazard Mater; 2020 Feb; 383():121149. PubMed ID: 31550667 [TBL] [Abstract][Full Text] [Related]
69. Eco-friendly floatable foam hydrogel for the adsorption of heavy metal ions and use of the generated waste for the catalytic reduction of organic dyes. Zhao H; Li Y Soft Matter; 2020 Jul; 16(29):6914-6923. PubMed ID: 32647853 [TBL] [Abstract][Full Text] [Related]
70. Facile engineering of mesoporous silica for the effective removal of anionic dyes from wastewater: Insights from DFT and experimental studies. Abdulazeez I; Alrajjal AS; Ganiyu S; Baig N; Salhi B; AbdElazem S Heliyon; 2023 Nov; 9(11):e21356. PubMed ID: 37920496 [TBL] [Abstract][Full Text] [Related]
71. Mesoporous Alumina Nanoparticles as Host Tunnel-like Pores for Removal and Recovery of Insecticides from Environmental Samples. Derbalah A; El-Safty SA; Shenashen MA; Abdel Ghany NA Chempluschem; 2015 Jul; 80(7):1119-1126. PubMed ID: 31973271 [TBL] [Abstract][Full Text] [Related]
72. Highly efficient and selective recovery of Au(III) by a new metal-organic polymer. Xu W; Mo X; Zhou S; Zhang P; Xiong B; Liu Y; Huang Y; Li H; Tang K J Hazard Mater; 2019 Dec; 380():120844. PubMed ID: 31299582 [TBL] [Abstract][Full Text] [Related]
73. Fabrication of Monodisperse Magnetic Polystyrene Mesoporous Composite Microspheres for High-Efficiency Selective Adsorption and Rapid Separation of Cationic Dyes in Textile Industry Wastewater. Liu X; Liu A; Liu B; Zhang M Langmuir; 2024 May; 40(21):11277-11286. PubMed ID: 38751337 [TBL] [Abstract][Full Text] [Related]
74. Mesoporous Magnetic/Polymer Hybrid Nanoabsorbent for Rapid and Efficient Removal of Heavy Metal Ions from Wastewater. Tao D; Tang Y; Zou B; Wang Y Langmuir; 2024 Feb; 40(5):2773-2780. PubMed ID: 38275660 [TBL] [Abstract][Full Text] [Related]
75. Ultrarapid and Sustainable Synthesis of Trimetallic-Based MOF (CrNiFe-MOF) from Stainless Steel and Disodium Terephthalate-Derived PET Wastes. Boukayouht K; Bazzi L; Daouli A; Maurin G; El Hankari S ACS Appl Mater Interfaces; 2024 Jan; 16(2):2497-2508. PubMed ID: 38178626 [TBL] [Abstract][Full Text] [Related]
76. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing. Zhu D; Zuo J; Jiang Y; Zhang J; Zhang J; Wei C Sci Total Environ; 2020 Mar; 707():136102. PubMed ID: 31863988 [TBL] [Abstract][Full Text] [Related]
77. The synthesis of super-small nano hydroxyapatite and its high adsorptions to mixed heavy metallic ions. Jing N; Zhou AN; Xu QH J Hazard Mater; 2018 Jul; 353():89-98. PubMed ID: 29635178 [TBL] [Abstract][Full Text] [Related]
78. Detection of Electrical Circuit in a Thin-Film-Transistor Liquid-Crystal Display Using a Hybrid Optoelectronic Apparatus: An Array Tester and Automatic Optical Inspection. Tzu FM; Chen JS; Hsu SH Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442586 [TBL] [Abstract][Full Text] [Related]
79. In-situ reaction for recycling indium from waste liquid crystal display panels by vaccum reduction with pyrolytic carbon as reductant. Wang R; Hou Y; Xu Z Waste Manag; 2019 Feb; 85():538-547. PubMed ID: 30803609 [TBL] [Abstract][Full Text] [Related]
80. The synergetic effect of a structure-engineered mesoporous SiO Huang D; Zhang Y; Zhang J; Wang H; Wang M; Wu C; Cheng D; Chi Y; Zhao Z RSC Adv; 2019 Nov; 9(66):38772-38782. PubMed ID: 35540193 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]