BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30991368)

  • 1. Fluid surface coatings for solid-state nanopores: comparison of phospholipid bilayers and archaea-inspired lipid monolayers.
    Eggenberger OM; Leriche G; Koyanagi T; Ying C; Houghtaling J; Schroeder TBH; Yang J; Li J; Hall A; Mayer M
    Nanotechnology; 2019 Aug; 30(32):325504. PubMed ID: 30991368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling protein translocation through nanopores with bio-inspired fluid walls.
    Yusko EC; Johnson JM; Majd S; Prangkio P; Rollings RC; Li J; Yang J; Mayer M
    Nat Nanotechnol; 2011 Apr; 6(4):253-60. PubMed ID: 21336266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.
    Garcia-Fandiño R; Piñeiro Á; Trick JL; Sansom MS
    ACS Nano; 2016 Mar; 10(3):3693-701. PubMed ID: 26943498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Shape, Volume, and Dipole Moment of Individual Proteins Freely Transiting a Synthetic Nanopore.
    Houghtaling J; Ying C; Eggenberger OM; Fennouri A; Nandivada S; Acharjee M; Li J; Hall AR; Mayer M
    ACS Nano; 2019 May; 13(5):5231-5242. PubMed ID: 30995394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid bilayer coated Al(2)O(3) nanopore sensors: towards a hybrid biological solid-state nanopore.
    Venkatesan BM; Polans J; Comer J; Sridhar S; Wendell D; Aksimentiev A; Bashir R
    Biomed Microdevices; 2011 Aug; 13(4):671-82. PubMed ID: 21487665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, assembly, and characterization of membrane-spanning DNA nanopores.
    Lanphere C; Offenbartl-Stiegert D; Dorey A; Pugh G; Georgiou E; Xing Y; Burns JR; Howorka S
    Nat Protoc; 2021 Jan; 16(1):86-130. PubMed ID: 33349702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces.
    Liu KW; Biswal SL
    Anal Chem; 2010 Sep; 82(18):7527-32. PubMed ID: 20726504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropatterned composite membranes of polymerized and fluid lipid bilayers.
    Morigaki K; Kiyosue K; Taguchi T
    Langmuir; 2004 Aug; 20(18):7729-35. PubMed ID: 15323525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetramethylammonium-filled protein nanopore for single-molecule analysis.
    Wang Y; Yao F; Kang XF
    Anal Chem; 2015 Oct; 87(19):9991-7. PubMed ID: 26337294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cholesterol on the bilayer properties of monounsaturated phosphatidylcholine unilamellar vesicles.
    Kucerka N; Pencer J; Nieh MP; Katsaras J
    Eur Phys J E Soft Matter; 2007 Jul; 23(3):247-54. PubMed ID: 17619814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and Kinetics of Lipid Bilayer Formation in Solid-State Nanopores.
    Zeng S; Li S; Utterström J; Wen C; Selegård R; Zhang SL; Aili D; Zhang Z
    Langmuir; 2020 Feb; 36(6):1446-1453. PubMed ID: 31971393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and functional properties of diacylglycerols in membranes.
    Goñi FM; Alonso A
    Prog Lipid Res; 1999 Jan; 38(1):1-48. PubMed ID: 10396601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic slip on DNA observed by optical tweezers-controlled translocation experiments with solid-state and lipid-coated nanopores.
    Galla L; Meyer AJ; Spiering A; Sischka A; Mayer M; Hall AR; Reimann P; Anselmetti D
    Nano Lett; 2014 Jul; 14(7):4176-82. PubMed ID: 24935198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ectoine, hydroxyectoine and β-hydroxybutyrate on the temperature and pressure stability of phospholipid bilayer membranes of different complexity.
    Herzog M; Dwivedi M; Kumar Harishchandra R; Bilstein A; Galla HJ; Winter R
    Colloids Surf B Biointerfaces; 2019 Jun; 178():404-411. PubMed ID: 30903979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes.
    Melby ES; Lohse SE; Park JE; Vartanian AM; Putans RA; Abbott HB; Hamers RJ; Murphy CJ; Pedersen JA
    ACS Nano; 2017 Jun; 11(6):5489-5499. PubMed ID: 28482159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide nanopores and lipid bilayers: interactions by coarse-grained molecular-dynamics simulations.
    Klingelhoefer JW; Carpenter T; Sansom MS
    Biophys J; 2009 May; 96(9):3519-28. PubMed ID: 19413958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface coatings for solid-state nanopores.
    Eggenberger OM; Ying C; Mayer M
    Nanoscale; 2019 Nov; 11(42):19636-19657. PubMed ID: 31603455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass.
    Gunderson RS; Honerkamp-Smith AR
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1965-1971. PubMed ID: 29752899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.