These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

778 related articles for article (PubMed ID: 30991370)

  • 1. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.
    Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC
    Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo.
    Cidonio G; Glinka M; Kim YH; Kanczler JM; Lanham SA; Ahlfeld T; Lode A; Dawson JI; Gelinsky M; Oreffo ROC
    Biofabrication; 2020 May; 12(3):035010. PubMed ID: 32259804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation.
    Tavares MT; Gaspar VM; Monteiro MV; S Farinha JP; Baleiz√£o C; Mano JF
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33455952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step.
    Xu L; Varkey M; Jorgensen A; Ju J; Jin Q; Park JH; Fu Y; Zhang G; Ke D; Zhao W; Hou R; Atala A
    Biofabrication; 2020 Jul; 12(4):045012. PubMed ID: 32619999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.
    Liu W; Heinrich MA; Zhou Y; Akpek A; Hu N; Liu X; Guan X; Zhong Z; Jin X; Khademhosseini A; Zhang YS
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28464555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells.
    Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K
    Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting.
    He H; Li D; Lin Z; Peng L; Yang J; Wu M; Cheng D; Pan H; Ruan C
    Biofabrication; 2020 Jul; 12(4):045003. PubMed ID: 32492671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices.
    Davern JW; Hipwood L; Bray LJ; Meinert C; Klein TJ
    APL Bioeng; 2024 Mar; 8(1):016101. PubMed ID: 38204454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a clay based bioink for 3D cell printing for skeletal application.
    Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M
    Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F
    Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repair.
    Man K; Barroso IA; Brunet MY; Peacock B; Federici AS; Hoey DA; Cox SC
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent.
    Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K
    Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.