These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30991563)

  • 1. Feasibility of a Heat-Pasteurization Process for the Inactivation of Nonproteolytic Clostridium botulinum types B and E in Vacuum-Packaged, Hot-Process (Smoked) Fish.
    Eklund MW; Peterson ME; Paranjpye R; Pelroy GA
    J Food Prot; 1988 Sep; 51(9):720-726. PubMed ID: 30991563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat-Pasteurization Process for Inactivation of Nonproteolytic Types of Clostridium botulinum in Picked Dungeness Crabmeat.
    Peterson ME; Pelroy GA; Poysky FT; Paranjpye RN; Dong FM; Pigott GM; Eklund MW
    J Food Prot; 1997 Aug; 60(8):928-934. PubMed ID: 31207801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products.
    Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H
    Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of growth of nonproteolytic Clostridium botulinum type B in sous vide cooked meat products is achieved by using thermal processing but not nisin.
    Lindström M; Mokkila M; Skyttä E; Hyytiä-Trees E; Lähteenmäki L; Hielm S; Ahvenainen R; Korkeala H
    J Food Prot; 2001 Jun; 64(6):838-44. PubMed ID: 11403135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F.
    Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR
    J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme.
    Fernández PS; Peck MW
    Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails.
    Lyon WJ; Reddmann CS
    J Food Prot; 2000 Dec; 63(12):1687-96. PubMed ID: 11131892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for Bacillus cereus Spores as the Target Pathogen in Thermally Processed Extended Shelf Life Refrigerated Foods.
    Reddy NR; Morrissey TR; Aguilar VL; Schill KM; Skinner GE
    J Food Prot; 2021 Mar; 84(3):442-448. PubMed ID: 33125074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Clostridium botulinum Types A and E Toxin Formation by Sodium Nitrite and Sodium Chloride in Hot-Process (Smoked) Salmon.
    Pelroy GA; Eklund MW; Paranjpye RN; Suzuki EM; Peterson ME
    J Food Prot; 1982 Jul; 45(9):833-841. PubMed ID: 30866305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C.
    Lund BM; Graham AF; George SM
    J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Clostridium botulinum Type E Toxin Formation by Potassium Chloride and Sodium Chloride in Hot-Process (Smoked) Whitefish ( Coregonus clupeaformis ).
    Pelroy GA; Scherer A; Peterson ME; Paranjpye R; Eklund MW
    J Food Prot; 1985 Nov; 48(11):971-975. PubMed ID: 30943648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Botulism Risk of Refrigerated, Processed Foods of Extended Durability.
    Notermans S; Dufrenne J; Lund BM
    J Food Prot; 1990 Dec; 53(12):1020-1024. PubMed ID: 31018272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined high pressure and thermal processing on inactivation of type E and nonproteolytic type B and F spores of Clostridium botulinum.
    Skinner GE; Marshall KM; Morrissey TR; Loeza V; Patazca E; Reddy NR; Larkin JW
    J Food Prot; 2014 Dec; 77(12):2054-61. PubMed ID: 25474050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence of Clostridium botulinum in Seafood and Significance of Multiple Incubation Temperatures for Determination of Its Presence and Type in Fresh Retail Fish.
    Baker DA; Genigeqrgis C; Garcia G
    J Food Prot; 1990 Aug; 53(8):668-673. PubMed ID: 31018337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risk of Growth and Toxin Production by Clostridium botulinum Nonproteolytic Types B, E, and F in Salmon Fillets Stored Under Modified Atmospheres at Low and Abused Temperatures.
    Garcia GW; Genigeorgis C; Lindroth S
    J Food Prot; 1987 Apr; 50(4):330-336. PubMed ID: 30965417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum.
    Stringer SC; Fairbairn DA; Peck MW
    J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures.
    Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC
    Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences and Similarities Among Proteolytic and Nonproteolytic Strains of Clostridium botulinum Types A, B, E and F: A Review.
    Lynt RK; Kautter DA; Solomon HM
    J Food Prot; 1982 Apr; 45(5):466-474. PubMed ID: 30866316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.