BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30991896)

  • 1. Boosting AgoshRNA activity by optimized 5'-terminal nucleotide selection.
    Gao Z; Berkhout B; Herrera-Carrillo E
    RNA Biol; 2019 Jul; 16(7):890-898. PubMed ID: 30991896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the 5΄-terminal nucleotide on AgoshRNA activity and biogenesis: importance of the polymerase III transcription initiation site.
    Herrera-Carrillo E; Gao ZL; Harwig A; Heemskerk MT; Berkhout B
    Nucleic Acids Res; 2017 Apr; 45(7):4036-4050. PubMed ID: 27928054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward optimization of AgoshRNA molecules that use a non-canonical RNAi pathway: variations in the top and bottom base pairs.
    Herrera-Carrillo E; Harwig A; Berkhout B
    RNA Biol; 2015; 12(4):447-56. PubMed ID: 25747107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silencing of HIV-1 by AgoshRNA molecules.
    Herrera-Carrillo E; Harwig A; Berkhout B
    Gene Ther; 2017 Aug; 24(8):453-461. PubMed ID: 28553929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of AgoshRNA maturation and loading into Ago2.
    Harwig A; Kruize Z; Yang Z; Restle T; Berkhout B
    PLoS One; 2017; 12(8):e0183269. PubMed ID: 28809941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Evaluation of AgoshRNAs with 3'-Terminal HDV Ribozymes to Enhance the Silencing Activity.
    Berkhout B; Herrera-Carrillo E
    Methods Mol Biol; 2021; 2167():225-252. PubMed ID: 32712923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the loop size and nucleotide composition on AgoshRNA biogenesis and activity.
    Herrera-Carrillo E; Harwig A; Berkhout B
    RNA Biol; 2017 Nov; 14(11):1559-1569. PubMed ID: 28569591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights on the Dicer-independent AGO2-mediated processing of AgoshRNAs.
    Liu YP; Karg M; Harwig A; Herrera-Carrillo E; Jongejan A; van Kampen A; Berkhout B
    RNA Biol; 2015; 12(1):92-100. PubMed ID: 25826416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Antiviral shRNAs Based on the AgoshRNA Design.
    Liu YP; Karg M; Herrera-Carrillo E; Berkhout B
    PLoS One; 2015; 10(6):e0128618. PubMed ID: 26087209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the shRNA characteristics that hinder Dicer recognition and consequently allow Ago-mediated processing and AgoshRNA activity.
    Herrera-Carrillo E; Harwig A; Liu YP; Berkhout B
    RNA; 2014 Sep; 20(9):1410-8. PubMed ID: 25035295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dicer-independent processing of short hairpin RNAs.
    Liu YP; Schopman NC; Berkhout B
    Nucleic Acids Res; 2013 Apr; 41(6):3723-33. PubMed ID: 23376931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of a 3' Terminal Ribozyme on AgoshRNA Biogenesis and Activity.
    Herrera-Carrillo E; Gao Z; Berkhout B
    Mol Ther Nucleic Acids; 2019 Jun; 16():452-462. PubMed ID: 31048184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of simple and efficient DNA vector-based short hairpin RNA expression systems for specific gene silencing in mammalian cells.
    Cheng TL; Chang WT
    Methods Mol Biol; 2007; 408():223-41. PubMed ID: 18314586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects.
    Shang R; Zhang F; Xu B; Xi H; Zhang X; Wang W; Wu L
    Nat Commun; 2015 Oct; 6():8430. PubMed ID: 26455506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization and comparison of knockdown efficacy between polymerase II expressed shRNA and artificial miRNA targeting luciferase and Apolipoprotein B100.
    Maczuga P; Koornneef A; Borel F; Petry H; van Deventer S; Ritsema T; Konstantinova P
    BMC Biotechnol; 2012 Jul; 12():42. PubMed ID: 22827812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation and comparison of the chicken H1 RNA polymerase III promoter for short hairpin RNA expression.
    Cummins DM; Tyack SG; Doran TJ
    Biochem Biophys Res Commun; 2011 Dec; 416(1-2):194-8. PubMed ID: 22093828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of buffalo 7SK and U6 pol III promoters and application for expression of short hairpin RNAs.
    Zhang X; Liu Q; Luo C; Deng Y; Cui K; Shi D
    Int J Mol Sci; 2014 Feb; 15(2):2596-607. PubMed ID: 24534805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of RNAi Responses by Short Left-Handed Hairpin RNAi Triggers.
    Hagopian JC; Hamil AS; van den Berg A; Meade BR; Eguchi A; Palm-Apergi C; Dowdy SF
    Nucleic Acid Ther; 2017 Oct; 27(5):260-271. PubMed ID: 28933656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Knockdown and Lack of Passenger Strand Activity by Dicer-Independent shRNAs Expressed from Pol II-Driven MicroRNA Scaffolds.
    Kaadt E; Alsing S; Cecchi CR; Damgaard CK; Corydon TJ; Aagaard L
    Mol Ther Nucleic Acids; 2019 Mar; 14():318-328. PubMed ID: 30654192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression.
    Bannister SC; Wise TG; Cahill DM; Doran TJ
    BMC Biotechnol; 2007 Nov; 7():79. PubMed ID: 18021456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.