These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30992138)

  • 21. A chemo-mechanical model for osmo-inelastic effects in the annulus fibrosus.
    Derrouiche A; Zaïri F; Zaïri F
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1773-1790. PubMed ID: 31165378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of overload on changes in mechanical and structural properties of the annulus fibrosus of the intervertebral disc.
    Żak M; Pezowicz C
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2259-2267. PubMed ID: 34431033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load.
    Guerin HA; Elliott DM
    J Biomech; 2006; 39(8):1410-8. PubMed ID: 15950233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus.
    Acaroglu ER; Iatridis JC; Setton LA; Foster RJ; Mow VC; Weidenbaum M
    Spine (Phila Pa 1976); 1995 Dec; 20(24):2690-701. PubMed ID: 8747247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Residual strains in the intervertebral disc annulus fibrosus suggest complex tissue remodeling in response to in-vivo loading.
    Duclos SE; Michalek AJ
    J Mech Behav Biomed Mater; 2017 Apr; 68():232-238. PubMed ID: 28232297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of needle damage on annulus fibrosus micromechanics.
    Vergari C; Mansfield JC; Chan D; Clarke A; Meakin JR; Winlove PC
    Acta Biomater; 2017 Nov; 63():274-282. PubMed ID: 28917706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
    Römgens AM; van Donkelaar CC; Ito K
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1221-31. PubMed ID: 23443749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osmo-inelastic response of the intervertebral disc annulus fibrosus tissue.
    Derrouiche A; Zaouali A; Zaïri F; Ismail J; Qu Z; Chaabane M; Zaïri F
    Proc Inst Mech Eng H; 2020 Sep; 234(9):1000-1010. PubMed ID: 32615851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nano and micro biomechanical alterations of annulus fibrosus after in situ immobilization revealed by atomic force microscopy.
    Liang T; Che YJ; Chen X; Li HT; Yang HL; Luo ZP
    J Orthop Res; 2019 Jan; 37(1):232-238. PubMed ID: 30370678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interlamellar-induced time-dependent response of intervertebral disc annulus: A microstructure-based chemo-viscoelastic model.
    Kandil K; Zaïri F; Derrouiche A; Messager T; Zaïri F
    Acta Biomater; 2019 Dec; 100():75-91. PubMed ID: 31586727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards intervertebral disc engineering: Bio-mimetics of form and function of the annulus fibrosus lamellae.
    Sharabi M; Wertheimer S; Wade KR; Galbusera F; Benayahu D; Wilke HJ; Haj-Ali R
    J Mech Behav Biomed Mater; 2019 Jun; 94():298-307. PubMed ID: 30951990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinal sections and regional variations in the mechanical properties of the annulus fibrosus subjected to tensile loading.
    Zak M; Pezowicz C
    Acta Bioeng Biomech; 2013; 15(1):51-9. PubMed ID: 23957617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fiber engagement accounts for geometry-dependent annulus fibrosus mechanics: A multiscale, Structure-Based Finite Element Study.
    Zhou M; Werbner B; O'Connell GD
    J Mech Behav Biomed Mater; 2021 Mar; 115():104292. PubMed ID: 33453608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient swelling behavior of the bovine caudal disc.
    Bezci SE; Torres K; Carraro C; Chiavacci D; Werbner B; Lim S; O'Connell GD
    J Mech Behav Biomed Mater; 2020 Dec; 112():104089. PubMed ID: 32998075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peak Stress in the Annulus Fibrosus Under Cyclic Biaxial Tensile Loading.
    Gooyers CE; Callaghan JP
    J Biomech Eng; 2016 May; 138(5):051006. PubMed ID: 26974403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Region-media coupling in characterization and modelling of the disc annulus single lamella swelling.
    Tavakoli J
    Med Biol Eng Comput; 2017 Aug; 55(8):1483-1492. PubMed ID: 28044243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tensile properties of nondegenerate human lumbar anulus fibrosus.
    Ebara S; Iatridis JC; Setton LA; Foster RJ; Mow VC; Weidenbaum M
    Spine (Phila Pa 1976); 1996 Feb; 21(4):452-61. PubMed ID: 8658249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical damage to the intervertebral disc annulus fibrosus subjected to tensile loading.
    Iatridis JC; MaClean JJ; Ryan DA
    J Biomech; 2005 Mar; 38(3):557-65. PubMed ID: 15652555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multiscale investigation into the role of collagen-hyaluronan interface shear on the mechanical behaviour of collagen fibers in annulus fibrosus - Molecular dynamics-cohesive finite element-based study.
    Bhattacharya S; Dubey DK
    J Mech Behav Biomed Mater; 2023 Nov; 147():106147. PubMed ID: 37812947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.