BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30992467)

  • 1. RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation.
    Agrawal S; Kuo PH; Chu LY; Golzarroshan B; Jain M; Yuan HS
    Sci Rep; 2019 Apr; 9(1):6171. PubMed ID: 30992467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43).
    Prakash A; Kumar V; Meena NK; Hassan MI; Lynn AM
    J Biomol Struct Dyn; 2019 Jan; 37(1):178-194. PubMed ID: 29279008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RRM domain of ALS/FTD-causing FUS characteristic of irreversible unfolding spontaneously self-assembles into amyloid fibrils.
    Lu Y; Lim L; Song J
    Sci Rep; 2017 Apr; 7(1):1043. PubMed ID: 28432364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for RNA recognition by the N-terminal tandem RRM domains of human RBM45.
    Chen X; Yang Z; Wang W; Qian K; Liu M; Wang J; Wang M
    Nucleic Acids Res; 2021 Mar; 49(5):2946-2958. PubMed ID: 33577684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RBM45 homo-oligomerization mediates association with ALS-linked proteins and stress granules.
    Li Y; Collins M; Geiser R; Bakkar N; Riascos D; Bowser R
    Sci Rep; 2015 Sep; 5():14262. PubMed ID: 26391765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TDP-43 and FUS-structural insights into RNA recognition and self-association.
    Loughlin FE; Wilce JA
    Curr Opin Struct Biol; 2019 Dec; 59():134-142. PubMed ID: 31479821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation.
    Luo F; Gui X; Zhou H; Gu J; Li Y; Liu X; Zhao M; Li D; Li X; Liu C
    Nat Struct Mol Biol; 2018 Apr; 25(4):341-346. PubMed ID: 29610493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS.
    Lee M; Ghosh U; Thurber KR; Kato M; Tycko R
    Nat Commun; 2020 Nov; 11(1):5735. PubMed ID: 33184287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Analysis Reveals the Maturation of Neurodegeneration-Associated Protein Aggregates: Grown in mRNA Granules then Released by Stress Granule Proteins.
    Abrakhi S; Kretov DA; Desforges B; Dobra I; Bouhss A; Pastré D; Hamon L
    ACS Nano; 2017 Jul; 11(7):7189-7200. PubMed ID: 28657719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs.
    Xu RM; Jokhan L; Cheng X; Mayeda A; Krainer AR
    Structure; 1997 Apr; 5(4):559-70. PubMed ID: 9115444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the aggregation-prone regions from structural domains of human TDP-43.
    Kumar V; Wahiduzzaman ; Prakash A; Tomar AK; Srivastava A; Kundu B; Lynn AM; Imtaiyaz Hassan M
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):286-296. PubMed ID: 30315897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids.
    Kuo PH; Chiang CH; Wang YT; Doudeva LG; Yuan HS
    Nucleic Acids Res; 2014 Apr; 42(7):4712-22. PubMed ID: 24464995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RBM45 competes with HDAC1 for binding to FUS in response to DNA damage.
    Gong J; Huang M; Wang F; Ma X; Liu H; Tu Y; Xing L; Zhu X; Zheng H; Fang J; Li X; Wang Q; Wang J; Sun Z; Wang X; Wang Y; Guo C; Tang TS
    Nucleic Acids Res; 2017 Dec; 45(22):12862-12876. PubMed ID: 29140459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA as the stone guest of protein aggregation.
    Louka A; Zacco E; Temussi PA; Tartaglia GG; Pastore A
    Nucleic Acids Res; 2020 Dec; 48(21):11880-11889. PubMed ID: 33068411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43.
    Lukavsky PJ; Daujotyte D; Tollervey JR; Ule J; Stuani C; Buratti E; Baralle FE; Damberger FF; Allain FH
    Nat Struct Mol Biol; 2013 Dec; 20(12):1443-9. PubMed ID: 24240615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the RNA recognition motifs of human neuronal ELAV-like proteins in binding to a cytokine mRNA.
    Sakai K; Kitagawa Y; Hirose G
    Biochem Biophys Res Commun; 1999 Mar; 256(2):263-8. PubMed ID: 10079173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-binding proteins with prion-like domains in health and disease.
    Harrison AF; Shorter J
    Biochem J; 2017 Apr; 474(8):1417-1438. PubMed ID: 28389532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity.
    Loughlin FE; Lukavsky PJ; Kazeeva T; Reber S; Hock EM; Colombo M; Von Schroetter C; Pauli P; Cléry A; Mühlemann O; Polymenidou M; Ruepp MD; Allain FH
    Mol Cell; 2019 Feb; 73(3):490-504.e6. PubMed ID: 30581145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FUS interacts with nuclear matrix-associated protein SAFB1 as well as Matrin3 to regulate splicing and ligand-mediated transcription.
    Yamaguchi A; Takanashi K
    Sci Rep; 2016 Oct; 6():35195. PubMed ID: 27731383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RRM domain of human fused in sarcoma protein reveals a non-canonical nucleic acid binding site.
    Liu X; Niu C; Ren J; Zhang J; Xie X; Zhu H; Feng W; Gong W
    Biochim Biophys Acta; 2013 Feb; 1832(2):375-85. PubMed ID: 23200923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.