These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30992536)

  • 1. Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect.
    Kang MS; Heo J; Choi SG; Moon S; Han SW
    Sci Rep; 2019 Apr; 9(1):6167. PubMed ID: 30992536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of quantum information encoded on three-photon decoherence-free states via cross-Kerr nonlinearities.
    Heo J; Kang MS; Hong CH; Hong JP; Choi SG
    Sci Rep; 2018 Sep; 8(1):13843. PubMed ID: 30218095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot.
    Heo J; Hong C; Choi SG; Hong JP
    Sci Rep; 2019 Jul; 9(1):10151. PubMed ID: 31300664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Procedure via cross-Kerr nonlinearities for encoding single logical qubit information onto four-photon decoherence-free states.
    Heo J; Choi SG
    Sci Rep; 2021 May; 11(1):10423. PubMed ID: 34001956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity.
    Hong CH; Heo J; Kang MS; Jang J; Yang HJ
    Sci Rep; 2018 Feb; 8(1):2566. PubMed ID: 29416070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of hybrid entanglement and hyperentanglement with time-bin for secure quantum channel under noise via weak cross-Kerr nonlinearity.
    Heo J; Kang MS; Hong CH; Yang HJ; Choi SG; Hong JP
    Sci Rep; 2017 Aug; 7(1):10208. PubMed ID: 28860529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic scheme of quantum phase estimation for quantum algorithms via cross-Kerr nonlinearities under decoherence effect.
    Hong C; Heo J; Kang MS; Jang J; Yang HJ; Kwon D
    Opt Express; 2019 Oct; 27(21):31023-31041. PubMed ID: 31684343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of four-photon polarization entangled decoherence-free states with cross-Kerr nonlinearity.
    Wang M; Yan F; Gao T
    Sci Rep; 2016 Nov; 6():38233. PubMed ID: 27901116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states.
    Heo J; Hong C; Kang MS; Yang HJ
    Sci Rep; 2020 Sep; 10(1):15334. PubMed ID: 32948781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of multiphoton entangled states by using weak nonlinearities.
    He YQ; Ding D; Yan FL; Gao T
    Sci Rep; 2016 Jan; 6():19116. PubMed ID: 26751044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem.
    Dong L; Wang JX; Li QY; Shen HZ; Dong HK; Xiu XM; Gao YJ
    Opt Lett; 2016 Mar; 41(5):1030-3. PubMed ID: 26974108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient quantum computing using coherent photon conversion.
    Langford NK; Ramelow S; Prevedel R; Munro WJ; Milburn GJ; Zeilinger A
    Nature; 2011 Oct; 478(7369):360-3. PubMed ID: 21993627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Many-body decoherence dynamics and optimized operation of a single-photon switch.
    Murray CR; Gorshkov AV; Pohl T
    New J Phys; 2016; 18():. PubMed ID: 31093009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement.
    Cui WX; Hu S; Wang HF; Zhu AD; Zhang S
    Opt Express; 2016 Jul; 24(14):15319-27. PubMed ID: 27410808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors.
    Wang HF; Zhang S; Zhu AD; Yi XX; Yeon KH
    Opt Express; 2011 Dec; 19(25):25433-40. PubMed ID: 22273935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed linear optics quantum computing using active feed-forward.
    Prevedel R; Walther P; Tiefenbacher F; Böhi P; Kaltenbaek R; Jennewein T; Zeilinger A
    Nature; 2007 Jan; 445(7123):65-9. PubMed ID: 17203057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental realization of linear-optical partial swap gates.
    Cernoch A; Soubusta J; Bartůsková L; Dusek M; Fiurásek J
    Phys Rev Lett; 2008 May; 100(18):180501. PubMed ID: 18518357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate.
    Cao C; Zhang L; Han YH; Yin PP; Fan L; Duan YW; Zhang R
    Opt Express; 2020 Feb; 28(3):2857-2872. PubMed ID: 32121965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system.
    Cao C; Duan YW; Chen X; Zhang R; Wang TJ; Wang C
    Opt Express; 2017 Jul; 25(15):16931-16946. PubMed ID: 28789193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental realization of SWAP operation on hyper-encoded qubits.
    Stárek R; Miková M; Straka I; Dušek M; Ježek M; Fiurášek J; Mičuda M
    Opt Express; 2018 Apr; 26(7):8443-8452. PubMed ID: 29715811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.