These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 3099297)

  • 21. An in vitro study of the translational attenuation model of ermC regulation.
    Narayanan CS; Dubnau D
    J Biol Chem; 1987 Feb; 262(4):1756-65. PubMed ID: 3027098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of ermC methylase in the absence of macrolide antibiotics and by pseudomonic acid A.
    Kadam SK
    J Bacteriol; 1989 Aug; 171(8):4518-20. PubMed ID: 2502538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the macrolide-lincosamide-streptogramin B resistance gene ermD.
    Hue KK; Bechhofer DH
    J Bacteriol; 1992 Sep; 174(18):5860-8. PubMed ID: 1522064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallel induction strategies for cat-86: separating chloramphenicol induction from protein synthesis inhibition.
    Rogers EJ; Ambulos NP; Gu Z; Lovett PS
    Mol Microbiol; 1993 Jun; 8(6):1063-9. PubMed ID: 7689687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 5' stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA.
    Hambraeus G; Karhumaa K; Rutberg B
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1795-1803. PubMed ID: 12055299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Erythromycin induces expression of the chloramphenicol acetyltransferase gene cat-86.
    Rogers EJ; Lovett PS
    J Bacteriol; 1990 Aug; 172(8):4694-5. PubMed ID: 2115875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug-free induction of a chloramphenicol acetyltransferase gene in Bacillus subtilis by stalling ribosomes in a regulatory leader.
    Duvall EJ; Ambulos NP; Lovett PS
    J Bacteriol; 1987 Sep; 169(9):4235-41. PubMed ID: 3114238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ermC leader peptide. Amino acid sequence critical for induction by translational attenuation.
    Mayford M; Weisblum B
    J Mol Biol; 1989 Mar; 206(1):69-79. PubMed ID: 2467989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ermC leader peptide: amino acid alterations leading to differential efficiency of induction by macrolide-lincosamide-streptogramin B antibiotics.
    Mayford M; Weisblum B
    J Bacteriol; 1990 Jul; 172(7):3772-9. PubMed ID: 2113911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. mRNA secondary structure in an open reading frame reduces translation efficiency in Bacillus subtilis.
    Kubo M; Imanaka T
    J Bacteriol; 1989 Jul; 171(7):4080-2. PubMed ID: 2500423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5'-to-3' nucleolytic cleavage of the ermA transcript.
    Sandler P; Weisblum B
    J Bacteriol; 1989 Dec; 171(12):6680-8. PubMed ID: 2592348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translational attenuation of the Bacillus subtilis spo0B cistron by an RNA structure encompassing the initiation region.
    Asayama M; Saito Ki; Kobayashi Y
    Nucleic Acids Res; 1998 Feb; 26(3):824-30. PubMed ID: 9443976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli.
    Condon C; Putzer H; Luo D; Grunberg-Manago M
    J Mol Biol; 1997 May; 268(2):235-42. PubMed ID: 9159466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Posttranscriptional regulation of an erythromycin resistance protein specified by plasmic pE194.
    Shivakumar AG; Hahn J; Grandi G; Kozlov Y; Dubnau D
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):3903-7. PubMed ID: 6159624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for the translational attenuation model: ribosome-binding studies and structural analysis with an in vitro run-off transcript of ermC.
    Narayanan CS; Dubnau D
    Nucleic Acids Res; 1985 Oct; 13(20):7307-26. PubMed ID: 3903662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance.
    Horinouchi S; Weisblum B
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7079-83. PubMed ID: 6938954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100-63.
    Tannock GW; Luchansky JB; Miller L; Connell H; Thode-Andersen S; Mercer AA; Klaenhammer TR
    Plasmid; 1994 Jan; 31(1):60-71. PubMed ID: 8171126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decay of ermC mRNA in a polynucleotide phosphorylase mutant of Bacillus subtilis.
    Bechhofer DH; Wang W
    J Bacteriol; 1998 Nov; 180(22):5968-77. PubMed ID: 9811656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of translational signals on mRNA decay in Bacillus subtilis.
    Sharp JS; Bechhofer DH
    J Bacteriol; 2003 Sep; 185(18):5372-9. PubMed ID: 12949089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of the Bacillus subtilis trpEDCFBA operon is influenced by translational coupling and Rho termination factor.
    Yakhnin H; Babiarz JE; Yakhnin AV; Babitzke P
    J Bacteriol; 2001 Oct; 183(20):5918-26. PubMed ID: 11566991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.