These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30993321)

  • 1. Spliceogen: an integrative, scalable tool for the discovery of splice-altering variants.
    Monger S; Troup M; Ip E; Dunwoodie SL; Giannoulatou E
    Bioinformatics; 2019 Nov; 35(21):4405-4407. PubMed ID: 30993321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNPlice: variants that modulate Intron retention from RNA-sequencing data.
    Mudvari P; Movassagh M; Kowsari K; Seyfi A; Kokkinaki M; Edwards NJ; Golestaneh N; Horvath A
    Bioinformatics; 2015 Apr; 31(8):1191-8. PubMed ID: 25481010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TranscriptClean: variant-aware correction of indels, mismatches and splice junctions in long-read transcripts.
    Wyman D; Mortazavi A
    Bioinformatics; 2019 Jan; 35(2):340-342. PubMed ID: 29912287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A plugin for the Ensembl Variant Effect Predictor that uses MaxEntScan to predict variant spliceogenicity.
    Shamsani J; Kazakoff SH; Armean IM; McLaren W; Parsons MT; Thompson BA; O'Mara TA; Hunt SE; Waddell N; Spurdle AB
    Bioinformatics; 2019 Jul; 35(13):2315-2317. PubMed ID: 30475984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. neoepiscope improves neoepitope prediction with multivariant phasing.
    Wood MA; Nguyen A; Struck AJ; Ellrott K; Nellore A; Thompson RF
    Bioinformatics; 2020 Feb; 36(3):713-720. PubMed ID: 31424527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambiguous splice sites distinguish circRNA and linear splicing in the human genome.
    Dehghannasiri R; Szabo L; Salzman J
    Bioinformatics; 2019 Apr; 35(8):1263-1268. PubMed ID: 30192918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SiNVICT: ultra-sensitive detection of single nucleotide variants and indels in circulating tumour DNA.
    Kockan C; Hach F; Sarrafi I; Bell RH; McConeghy B; Beja K; Haegert A; Wyatt AW; Volik SV; Chi KN; Collins CC; Sahinalp SC
    Bioinformatics; 2017 Jan; 33(1):26-34. PubMed ID: 27531099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining full-length gene assay and SpliceAI to interpret the splicing impact of all possible SPINK1 coding variants.
    Wu H; Lin JH; Tang XY; Marenne G; Zou WB; Schutz S; Masson E; Génin E; Fichou Y; Le Gac G; Férec C; Liao Z; Chen JM
    Hum Genomics; 2024 Feb; 18(1):21. PubMed ID: 38414044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spliceman2: a computational web server that predicts defects in pre-mRNA splicing.
    Cygan KJ; Sanford CH; Fairbrother WG
    Bioinformatics; 2017 Sep; 33(18):2943-2945. PubMed ID: 28911038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dv-trio: a family-based variant calling pipeline using DeepVariant.
    Ip EKK; Hadinata C; Ho JWK; Giannoulatou E
    Bioinformatics; 2020 Jun; 36(11):3549-3551. PubMed ID: 32315409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational discovery of human coding and non-coding transcripts with conserved splice sites.
    Rose D; Hiller M; Schutt K; Hackermüller J; Backofen R; Stadler PF
    Bioinformatics; 2011 Jul; 27(14):1894-900. PubMed ID: 21622663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting gene structure changes resulting from genetic variants via exon definition features.
    Majoros WH; Holt C; Campbell MS; Ware D; Yandell M; Reddy TE
    Bioinformatics; 2018 Nov; 34(21):3616-3623. PubMed ID: 29701825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel biological characterization of exomic variants at the protein level significantly improves the identification of their deleterious effects.
    Raimondi D; Gazzo AM; Rooman M; Lenaerts T; Vranken WF
    Bioinformatics; 2016 Jun; 32(12):1797-804. PubMed ID: 27153718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snaptron: querying splicing patterns across tens of thousands of RNA-seq samples.
    Wilks C; Gaddipati P; Nellore A; Langmead B
    Bioinformatics; 2018 Jan; 34(1):114-116. PubMed ID: 28968689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism.
    Angione C
    Bioinformatics; 2018 Feb; 34(3):494-501. PubMed ID: 28968777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rules and tools to predict the splicing effects of exonic and intronic mutations.
    Ohno K; Takeda JI; Masuda A
    Wiley Interdiscip Rev RNA; 2018 Jan; 9(1):. PubMed ID: 28949076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChopStitch: exon annotation and splice graph construction using transcriptome assembly and whole genome sequencing data.
    Khan H; Mohamadi H; Vandervalk BP; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 May; 34(10):1697-1704. PubMed ID: 29300846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIVAN: tissue-specific cis-eQTL single nucleotide variant annotation and prediction.
    Chen L; Wang Y; Yao B; Mitra A; Wang X; Qin X
    Bioinformatics; 2019 May; 35(9):1573-1575. PubMed ID: 30304335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.