These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 30993408)
1. Investigating the Effect of APAP Crystals on Tablet Behavior Manufactured by Direct Compression. Ghazi N; Liu Z; Bhatt C; Kiang S; Cuitino A AAPS PharmSciTech; 2019 Apr; 20(5):168. PubMed ID: 30993408 [TBL] [Abstract][Full Text] [Related]
2. Continuous direct tablet compression: effects of impeller rotation rate, total feed rate and drug content on the tablet properties and drug release. Järvinen MA; Paaso J; Paavola M; Leiviskä K; Juuti M; Muzzio F; Järvinen K Drug Dev Ind Pharm; 2013 Nov; 39(11):1802-8. PubMed ID: 23163644 [TBL] [Abstract][Full Text] [Related]
3. Orally Disintegrating Tablet Manufacture via Direct Powder Compression Using Cellulose Nanofiber as a Functional Additive. Nakamura S; Fukai T; Sakamoto T AAPS PharmSciTech; 2021 Dec; 23(1):37. PubMed ID: 34950985 [TBL] [Abstract][Full Text] [Related]
4. Comparison between integrated continuous direct compression line and batch processing - The effect of raw material properties. Karttunen AP; Wikström H; Tajarobi P; Fransson M; Sparén A; Marucci M; Ketolainen J; Folestad S; Korhonen O; Abrahmsén-Alami S Eur J Pharm Sci; 2019 May; 133():40-53. PubMed ID: 30862514 [TBL] [Abstract][Full Text] [Related]
5. Towards a real time release approach for manufacturing tablets using NIR spectroscopy. Pestieau A; Krier F; Thoorens G; Dupont A; Chavez PF; Ziemons E; Hubert P; Evrard B J Pharm Biomed Anal; 2014 Sep; 98():60-7. PubMed ID: 24880992 [TBL] [Abstract][Full Text] [Related]
6. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression. Nakamura S; Tanaka C; Yuasa H; Sakamoto T AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317 [TBL] [Abstract][Full Text] [Related]
7. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes. Kushner J; Langdon BA; Hicks I; Song D; Li F; Kathiria L; Kane A; Ranade G; Agarwal K J Pharm Sci; 2014 Feb; 103(2):527-38. PubMed ID: 24375069 [TBL] [Abstract][Full Text] [Related]
8. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating. Kunnath K; Huang Z; Chen L; Zheng K; Davé R Int J Pharm; 2018 May; 543(1-2):288-299. PubMed ID: 29625168 [TBL] [Abstract][Full Text] [Related]
9. Cinnamyl O-amine functionalized chitosan as a new excipient in direct compressed tablets with improved drug delivery. Ren G; Clancy C; Tamer TM; Schaller B; Walker GM; Collins MN Int J Biol Macromol; 2019 Dec; 141():936-946. PubMed ID: 31487516 [TBL] [Abstract][Full Text] [Related]
10. Fine-Particle ethylcellulose as a tablet binder in direct compression, immediate-release tablets. Desai RP; Neau SH; Pather SI; Johnston TP Drug Dev Ind Pharm; 2001 Aug; 27(7):633-41. PubMed ID: 11694010 [TBL] [Abstract][Full Text] [Related]
11. Continuous direct compression of a commercially batch-manufactured tablet formulation with two different processing lines. Lyytikäinen J; Stasiak P; Kubelka T; Bogaerts I; Wanek A; Stynen B; Holman J; Ketolainen J; Ervasti T; Korhonen O Eur J Pharm Biopharm; 2024 Jun; 199():114278. PubMed ID: 38583787 [TBL] [Abstract][Full Text] [Related]
12. Formulation design of a novel fast-disintegrating tablet. Mizumoto T; Masuda Y; Yamamoto T; Yonemochi E; Terada K Int J Pharm; 2005 Dec; 306(1-2):83-90. PubMed ID: 16257154 [TBL] [Abstract][Full Text] [Related]
13. Formulation and characterization of a compacted multiparticulate system for modified release of water-soluble drugs--part 1--acetaminophen. Cantor SL; Hoag SW; Augsburger LL Drug Dev Ind Pharm; 2009 Mar; 35(3):337-51. PubMed ID: 18798034 [TBL] [Abstract][Full Text] [Related]
14. Provoking an end-to-end continuous direct compression line with raw materials prone to segregation. Lakio S; Ervasti T; Tajarobi P; Wikström H; Fransson M; Karttunen AP; Ketolainen J; Folestad S; Abrahmsén-Alami S; Korhonen O Eur J Pharm Sci; 2017 Nov; 109():514-524. PubMed ID: 28899763 [TBL] [Abstract][Full Text] [Related]
15. Effect of tablet solubility and hygroscopicity on disintegrant efficiency in direct compression tablets in terms of dissolution. Gordon MS; Chowhan ZT J Pharm Sci; 1987 Dec; 76(12):907-9. PubMed ID: 3440935 [TBL] [Abstract][Full Text] [Related]
16. Preparation of antipyretic analgesic by direct compression and its evaluation. Terashita K; Imamura K Chem Pharm Bull (Tokyo); 2002 Dec; 50(12):1542-9. PubMed ID: 12499587 [TBL] [Abstract][Full Text] [Related]
17. Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression. Sun WJ; Aburub A; Sun CC J Pharm Sci; 2017 Jul; 106(7):1772-1777. PubMed ID: 28322940 [TBL] [Abstract][Full Text] [Related]
18. Impact of formulation variables on weight uniformity of scored tablets using factorial design. Zaid AN; Hawari R; Malkieh N; Natshih Y; Yousef A; Jaradat N; Hammad A; Basharat R Pak J Pharm Sci; 2019 Sep; 32(5(Special)):2501-2507. PubMed ID: 31894042 [TBL] [Abstract][Full Text] [Related]
19. Relationships between response surfaces for tablet characteristics of placebo and API-containing tablets manufactured by direct compression method. Hayashi Y; Tsuji T; Shirotori K; Oishi T; Kosugi A; Kumada S; Hirai D; Takayama K; Onuki Y Int J Pharm; 2017 Oct; 532(1):82-89. PubMed ID: 28859939 [TBL] [Abstract][Full Text] [Related]
20. The effects of unintentional and intentional process disturbances on tablet quality during long continuous manufacturing runs. Taipale-Kovalainen K; Karttunen AP; Niinikoski H; Ketolainen J; Korhonen O Eur J Pharm Sci; 2019 Mar; 129():10-20. PubMed ID: 30550973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]