BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30993735)

  • 1. Enhanced adsorption and slow release of phosphate by dolomite-alginate composite beads as potential fertilizer.
    Huang YX; Liu MJ; Chen S; Jasmi II; Tang Y; Lin S
    Water Environ Res; 2019 Aug; 91(8):797-804. PubMed ID: 30993735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate removal from water using alginate/carboxymethylcellulose/aluminum beads and plaster of paris.
    Malicevic S; Garcia Pacheco AP; Lamont K; Estepa KM; Daguppati P; van de Vegte J; Marangoni AG; Pensini E
    Water Environ Res; 2020 Sep; 92(9):1255-1267. PubMed ID: 32153084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Y
    Lin S; Xu Y; Fu C; Zhang H; Kong Q; He H; Liu S; Shi X; Zhao D
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73534-73547. PubMed ID: 37191749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery phosphate and ammonium from aqueous solution by the process of electrochemically decomposing dolomite.
    Li X; Zhou X; Yang B; Wen Z
    Chemosphere; 2021 Jan; 262():128357. PubMed ID: 33182098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.
    Karaca S; Gürses A; Ejder M; Açikyildiz M
    J Colloid Interface Sci; 2004 Sep; 277(2):257-63. PubMed ID: 15341833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eutrophication decrease: Phosphate adsorption processes in presence of nitrates.
    Boeykens SP; Piol MN; Samudio Legal L; Saralegui AB; Vázquez C
    J Environ Manage; 2017 Dec; 203(Pt 3):888-895. PubMed ID: 28521958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of low-concentration phosphorus using a fluidized raw dolomite bed.
    Ayoub GM; Kalinian H
    Water Environ Res; 2006 Apr; 78(4):353-61. PubMed ID: 16749303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layered double hydroxide-alginate/polyvinyl alcohol beads: fabrication and phosphate removal from aqueous solution.
    Kim Phuong NT
    Environ Technol; 2014; 35(21-24):2829-36. PubMed ID: 25176487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxymethyl cellulose/sodium alginate beads incorporated with calcium carbonate nanoparticles and bentonite for phosphate recovery.
    Fu J; Yap JX; Leo CP; Chang CK
    Int J Biol Macromol; 2023 Apr; 234():123642. PubMed ID: 36791941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite.
    Karaca S; Gürses A; Ejder M; Açikyildiz M
    J Hazard Mater; 2006 Feb; 128(2-3):273-9. PubMed ID: 16202518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.
    Pehlivan E; Ozkan AM; Dinç S; Parlayici S
    J Hazard Mater; 2009 Aug; 167(1-3):1044-9. PubMed ID: 19237240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of differential levels of phosphorus fixation in dolomite and calcium carbonate amended red soil.
    Fan B; Ding J; Fenton O; Daly K; Chen S; Zhang S; Chen Q
    J Sci Food Agric; 2022 Jan; 102(2):740-749. PubMed ID: 34173233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategic differences in phosphorus stabilization by alum and dolomite amendments in calcareous and red soils.
    Fan B; Wang J; Fenton O; Daly K; Ezzati G; Chen Q
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4842-4854. PubMed ID: 30569362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced alginate-based microsphere with the pore-forming agent for efficient removal of Cu(Ⅱ).
    Hu X; Long L; Gong T; Zhang J; Yan J; Xue Y
    Chemosphere; 2020 Feb; 240():124860. PubMed ID: 31542578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reswellable alginate/activated carbon/carboxymethyl cellulose hydrogel beads for ibuprofen adsorption from aqueous solutions.
    Lee JW; Han J; Choi YK; Park S; Lee SH
    Int J Biol Macromol; 2023 Sep; 249():126053. PubMed ID: 37517753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks.
    Xie M; Olderøy MØ; Andreassen JP; Selbach SM; Strand BL; Sikorski P
    Acta Biomater; 2010 Sep; 6(9):3665-75. PubMed ID: 20359556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer.
    Wang B; Ma Y; Lee X; Wu P; Liu F; Zhang X; Li L; Chen M
    Sci Total Environ; 2021 Mar; 758():143664. PubMed ID: 33288263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution.
    Jung KW; Jeong TU; Kang HJ; Ahn KH
    Bioresour Technol; 2016 Jul; 211():108-16. PubMed ID: 27010340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous removal of a cationic and an anionic textile dye from water by a mixed sorbent of vermicompost and Persian charred dolomite.
    Shirazi EK; Metzger JW; Fischer K; Hassani AH
    Chemosphere; 2019 Nov; 234():618-629. PubMed ID: 31229723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters.
    Pinheiro CP; Moreira LMK; Alves SS; Cadaval TRS; Pinto LAA
    Int J Biol Macromol; 2021 Jan; 166():934-939. PubMed ID: 33152365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.