These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30993751)

  • 1. Direct Writing of a 90 wt% Particle Loading Nanothermite.
    Wang H; Shen J; Kline DJ; Eckman N; Agrawal NR; Wu T; Wang P; Zachariah MR
    Adv Mater; 2019 Jun; 31(23):e1806575. PubMed ID: 30993751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Fibers Enhance the Propagation of High Loading Nanothermites: In Situ Observation of Microscopic Combustion.
    Wang H; Kline DJ; Rehwoldt MC; Zachariah MR
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30504-30511. PubMed ID: 34170673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fluoropolymer content on thermal and combustion performance of direct writing high-solid nanothermite composite.
    Jiao Y; Li S; Li G; Luo Y
    RSC Adv; 2022 Feb; 12(9):5612-5618. PubMed ID: 35425591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties.
    Jiang Z; Erol O; Chatterjee D; Xu W; Hibino N; Romer LH; Kang SH; Gracias DH
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28289-28295. PubMed ID: 31291075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printable Conducting and Biocompatible PEDOT-graft-PLA Copolymers by Direct Ink Writing.
    Dominguez-Alfaro A; Gabirondo E; Alegret N; De León-Almazán CM; Hernandez R; Vallejo-Illarramendi A; Prato M; Mecerreyes D
    Macromol Rapid Commun; 2021 Jun; 42(12):e2100100. PubMed ID: 33938086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters.
    Ebers LS; Laborie MP
    ACS Appl Bio Mater; 2020 Oct; 3(10):6897-6907. PubMed ID: 35019351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanothermite with Meringue-like Morphology: From Loose Powder to Ultra-porous Objects.
    Martin C; Comet M; Schnell F; Spitzer D
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Polymer Designs for Direct-Ink-Write 3D Printing.
    Li L; Lin Q; Tang M; Duncan AJE; Ke C
    Chemistry; 2019 Aug; 25(46):10768-10781. PubMed ID: 31087700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Energetic Composites with 91% Solid Content by 3D Direct Writing.
    Deng Y; Wu X; Deng P; Guan F; Ren H
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct 3D printing of graphene using capillary suspensions.
    Ding H; Barg S; Derby B
    Nanoscale; 2020 Jun; 12(21):11440-11447. PubMed ID: 32436495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Oxide: An All-in-One Processing Additive for 3D Printing.
    García-Tuñón E; Feilden E; Zheng H; D'Elia E; Leong A; Saiz E
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32977-32989. PubMed ID: 28898053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion.
    Thibaut C; Denneulin A; Rolland du Roscoat S; Beneventi D; Orgéas L; Chaussy D
    Carbohydr Polym; 2019 May; 212():119-128. PubMed ID: 30832839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries.
    Cheng M; Jiang Y; Yao W; Yuan Y; Deivanayagam R; Foroozan T; Huang Z; Song B; Rojaee R; Shokuhfar T; Pan Y; Lu J; Shahbazian-Yassar R
    Adv Mater; 2018 Sep; 30(39):e1800615. PubMed ID: 30132998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of polymeric implant materials produced by extrusion-based additive manufacturing.
    Petersmann S; Spoerk M; Van De Steene W; Üçal M; Wiener J; Pinter G; Arbeiter F
    J Mech Behav Biomed Mater; 2020 Apr; 104():103611. PubMed ID: 31929095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Reaction Mechanism of Aluminum/Poly(vinylidene fluoride) Composites.
    DeLisio JB; Hu X; Wu T; Egan GC; Young G; Zachariah MR
    J Phys Chem B; 2016 Jun; 120(24):5534-42. PubMed ID: 27228361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon Nanoparticles for the Reactivity and Energetic Density Enhancement of Energetic-Biocidal Mesoparticle Composites.
    Ghildiyal P; Ke X; Biswas P; Nava G; Schwan J; Xu F; Kline DJ; Wang H; Mangolini L; Zachariah MR
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):458-467. PubMed ID: 33373186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upcycling waste derived glass into high-performance photocatalytic scaffolds by alkali activation and direct ink writing.
    Mahmoud M; Kraxner J; Mehta A; Elsayed H; Galusek D; Bernardo E
    Heliyon; 2024 Jan; 10(2):e24737. PubMed ID: 38298710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.
    Hodaei A; Akhlaghi O; Khani N; Aytas T; Sezer D; Tatli B; Menceloglu YZ; Koc B; Akbulut O
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9873-9881. PubMed ID: 29474786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.