BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30993767)

  • 1. Expansion history and environmental suitability shape effective population size in a plant invasion.
    Braasch J; Barker BS; Dlugosch KM
    Mol Ecol; 2019 May; 28(10):2546-2558. PubMed ID: 30993767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis).
    Barker BS; Andonian K; Swope SM; Luster DG; Dlugosch KM
    Mol Ecol; 2017 Feb; 26(4):1131-1147. PubMed ID: 28029713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersal pathways and genetic differentiation among worldwide populations of the invasive weed Centaurea solstitialis L. (Asteraceae).
    Eriksen RL; Hierro JL; Eren Ö; Andonian K; Török K; Becerra PI; Montesinos D; Khetsuriani L; Diaconu A; Kesseli R
    PLoS One; 2014; 9(12):e114786. PubMed ID: 25551223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria.
    Lu-Irving P; Harenčár JG; Sounart H; Welles SR; Swope SM; Baltrus DA; Dlugosch KM
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30842267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased phenotypic plasticity to climate may have boosted the invasion success of polyploid Centaurea stoebe.
    Hahn MA; van Kleunen M; Müller-Schärer H
    PLoS One; 2012; 7(11):e50284. PubMed ID: 23185598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa.
    Treier UA; Broennimann O; Normand S; Guisan A; Schaffner U; Steinger T; Müller-Schärer H
    Ecology; 2009 May; 90(5):1366-77. PubMed ID: 19537556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome size variation and evolution during invasive range expansion in an introduced plant.
    Cang FA; Welles SR; Wong J; Ziaee M; Dlugosch KM
    Evol Appl; 2024 Jan; 17(1):e13624. PubMed ID: 38283607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Range-expanding populations of a globally introduced weed experience negative plant-soil feedbacks.
    Andonian K; Hierro JL; Khetsuriani L; Becerra P; Janoyan G; Villarreal D; Cavieres L; Fox LR; Callaway RM
    PLoS One; 2011; 6(5):e20117. PubMed ID: 21629781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change and biological invasions: evidence, expectations, and response options.
    Hulme PE
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of climatic niche shift during biological invasion.
    Broennimann O; Treier UA; Müller-Schärer H; Thuiller W; Peterson AT; Guisan A
    Ecol Lett; 2007 Aug; 10(8):701-9. PubMed ID: 17594425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allele identification for transcriptome-based population genomics in the invasive plant Centaurea solstitialis.
    Dlugosch KM; Lai Z; Bonin A; Hierro J; Rieseberg LH
    G3 (Bethesda); 2013 Feb; 3(2):359-67. PubMed ID: 23390612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invasive and non-invasive congeners show similar trait shifts between their same native and non-native ranges.
    García Y; Callaway RM; Diaconu A; Montesinos D
    PLoS One; 2013; 8(12):e82281. PubMed ID: 24358163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes.
    Dukes JS; Chiariello NR; Loarie SR; Field CB
    Ecol Appl; 2011 Sep; 21(6):1887-94. PubMed ID: 21939031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread seed limitation affects plant density but not population trajectory in the invasive plant Centaurea solstitialis.
    Swope SM; Parker IM
    Oecologia; 2010 Sep; 164(1):117-28. PubMed ID: 20443027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive analysis of native and non-native
    Irimia RE; Montesinos D; Eren Ö; Lortie CJ; French K; Cavieres LA; Sotes GJ; Hierro JL; Jorge A; Loureiro J
    PeerJ; 2017; 5():e3531. PubMed ID: 28828232
    [No Abstract]   [Full Text] [Related]  

  • 16. Loci under selection during multiple range expansions of an invasive plant are mostly population specific, but patterns are associated with climate.
    Zenni RD; Hoban SM
    Mol Ecol; 2015 Jul; 24(13):3360-71. PubMed ID: 25958932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disturbance facilitates invasion: the effects are stronger abroad than at home.
    Hierro JL; Villarreal D; Eren O; Graham JM; Callaway RM
    Am Nat; 2006 Aug; 168(2):144-56. PubMed ID: 16874625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Genetic Paradox of Invasions revisited: the potential role of inbreeding × environment interactions in invasion success.
    Schrieber K; Lachmuth S
    Biol Rev Camb Philos Soc; 2017 May; 92(2):939-952. PubMed ID: 27009691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. North-South Colonization Associated with Local Adaptation of the Wild Tomato Species Solanum chilense.
    Böndel KB; Lainer H; Nosenko T; Mboup M; Tellier A; Stephan W
    Mol Biol Evol; 2015 Nov; 32(11):2932-43. PubMed ID: 26232423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site conditions determine a key native plant's contribution to invasion resistance in grasslands.
    Hulvey KB; Teller BJ
    Ecology; 2018 Jun; 99(6):1257-1264. PubMed ID: 29604054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.