These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30993968)

  • 1. Thermodynamically versus Kinetically Controlled Self-Assembly of a Naphthalenediimide-Thiophene Derivative: From Crystalline, Fluorescent, n-Type Semiconducting 1D Needles to Nanofibers.
    Zangoli M; Gazzano M; Monti F; Maini L; Gentili D; Liscio A; Zanelli A; Salatelli E; Gigli G; Baroncini M; Di Maria F
    ACS Appl Mater Interfaces; 2019 May; 11(18):16864-16871. PubMed ID: 30993968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control over Kinetic and Thermodynamically Driven Pathways of Crystallization to Yield Cofacial and Slipped-Stack Dimers in Single Crystals.
    Ghosh T; Birudula S; Kalita KJ; Vijayaraghavan RK
    Chemistry; 2020 Aug; 26(46):10501-10509. PubMed ID: 32314832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Polymorphism in One-Dimensional Self-Assembly by Kinetic Pathway Control.
    Wehner M; Röhr MIS; Bühler M; Stepanenko V; Wagner W; Würthner F
    J Am Chem Soc; 2019 Apr; 141(14):6092-6107. PubMed ID: 30892890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorph farming of acetaminophen and sulfathiazole on a chip.
    Lee T; Hung ST; Kuo CS
    Pharm Res; 2006 Nov; 23(11):2542-55. PubMed ID: 16969701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorphism in Squaraine Dye Aggregates by Self-Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus J-Aggregate Nanosheets.
    Shen CA; Bialas D; Hecht M; Stepanenko V; Sugiyasu K; Würthner F
    Angew Chem Int Ed Engl; 2021 May; 60(21):11949-11958. PubMed ID: 33751763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the evolution of supramolecular nanofibers in solution and solid-state: a combined microscopic and spectroscopic approach.
    Kundu S; Chowdhury A; Nandi S; Bhattacharyya K; Patra A
    Chem Sci; 2021 Mar; 12(16):5874-5882. PubMed ID: 34168812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport.
    An BK; Gierschner J; Park SY
    Acc Chem Res; 2012 Apr; 45(4):544-54. PubMed ID: 22085759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly and orientation of hydrogen-bonded oligothiophene polymorphs at liquid-membrane-liquid interfaces.
    Tevis ID; Palmer LC; Herman DJ; Murray IP; Stone DA; Stupp SI
    J Am Chem Soc; 2011 Oct; 133(41):16486-94. PubMed ID: 21879723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic trapping - a strategy for directing the self-assembly of unique functional nanostructures.
    Yan Y; Huang J; Tang BZ
    Chem Commun (Camb); 2016 Oct; 52(80):11870-84. PubMed ID: 27494003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution self-assembly and phase transformations of form II crystals in nanoconfined poly(3-hexyl thiophene) based rod-coil block copolymers.
    Lee YH; Yang YL; Yen WC; Su WF; Dai CA
    Nanoscale; 2014 Feb; 6(4):2194-200. PubMed ID: 24382571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Polymorphism as the Result of Kinetically Controlled Self-Assembly.
    Brown RD; Corcelli SA; Kandel SA
    Acc Chem Res; 2018 Feb; 51(2):465-474. PubMed ID: 29381328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Luminescent Liquid Crystal with Aggregation-Induced Energy Transfer.
    Liu Y; You LH; Lin FX; Fu K; Yuan WZ; Chen EQ; Yu ZQ; Tang BZ
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3516-3523. PubMed ID: 30592413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides.
    Nalluri SK; Berdugo C; Javid N; Frederix PW; Ulijn RV
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5882-7. PubMed ID: 24788665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. J-aggregation, its impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide.
    Kar H; Gehrig DW; Laquai F; Ghosh S
    Nanoscale; 2015 Apr; 7(15):6729-36. PubMed ID: 25805563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization.
    Ogi S; Stepanenko V; Thein J; Würthner F
    J Am Chem Soc; 2016 Jan; 138(2):670-8. PubMed ID: 26699283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of an Aromatic Solvent on Hydrogen-Bond-Directed Supramolecular Polymerization Leading to Distinct Topologies.
    Isobe A; Prabhu DD; Datta S; Aizawa T; Yagai S
    Chemistry; 2020 Jul; 26(41):8997-9004. PubMed ID: 32350945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular oligothiophene microfibers spontaneously assembled on surfaces or coassembled with proteins inside live cells.
    Barbarella G; Di Maria F
    Acc Chem Res; 2015 Aug; 48(8):2230-41. PubMed ID: 26234700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipole-Dipole Interaction Driven Self-Assembly of Merocyanine Dyes: From Dimers to Nanoscale Objects and Supramolecular Materials.
    Würthner F
    Acc Chem Res; 2016 May; 49(5):868-76. PubMed ID: 27064423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart Nanocages as a Tool for Controlling Supramolecular Aggregation.
    Picchetti P; Moreno-Alcántar G; Talamini L; Mourgout A; Aliprandi A; De Cola L
    J Am Chem Soc; 2021 May; 143(20):7681-7687. PubMed ID: 33891394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.