BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 30994212)

  • 1. Total Synthesis of Aspidosperma and Strychnos Alkaloids through Indole Dearomatization.
    Saya JM; Ruijter E; Orru RVA
    Chemistry; 2019 Jul; 25(38):8916-8935. PubMed ID: 30994212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total Syntheses of Lycopodium and Monoterpenoid Indole Alkaloids Based on Biosynthesis-Inspired Strategies.
    Takayama H
    Chem Pharm Bull (Tokyo); 2020; 68(2):103-116. PubMed ID: 32009077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoterpenoid Bisindole Alkaloids.
    Kitajima M; Takayama H
    Alkaloids Chem Biol; 2016; 76():259-310. PubMed ID: 26827885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient access to the core of the Strychnos, Aspidosperma and Iboga alkaloids. A short synthesis of norfluorocurarine.
    Martin DB; Vanderwal CD
    J Am Chem Soc; 2009 Mar; 131(10):3472-3. PubMed ID: 19236094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular amidofuran cycloadditions across an indole pi-bond: an efficient approach to the aspidosperma and strychnos ABCE core.
    Lynch SM; Bur SK; Padwa A
    Org Lett; 2002 Dec; 4(26):4643-5. PubMed ID: 12489950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of the Core Structure of Aspidosperma and Strychnos Alkaloids from Aryl Azides by a Cascade Radical Cyclization.
    Wyler B; Brucelle F; Renaud P
    Org Lett; 2016 Mar; 18(6):1370-3. PubMed ID: 26926777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New pyridocarbazole alkaloids from Strychnos nitida.
    Li W; Tang GH; Chen L; Tang YQ; Xu YK; Liu B; Yin S
    Nat Prod Res; 2018 Jul; 32(13):1532-1536. PubMed ID: 29022360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspidosperma and Strychnos alkaloids: Chemistry and biology.
    Zhao S; Sirasani G; Andrade RB
    Alkaloids Chem Biol; 2021; 86():1-143. PubMed ID: 34565505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Homo-Mannich Reaction Strategy Enables Collective Access to Ibophyllidine, Aspidosperma, Kopsia, and Melodinus Alkaloids.
    Jiang D; Tang P; Xiong H; Lei S; Zhang Y; Zhang C; He L; Qiu H; Zhang M
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202307286. PubMed ID: 37490018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiproliferative Aspidosperma-Type Monoterpenoid Indole Alkaloids from
    Zhang Y; Goto M; Oda A; Hsu PL; Guo LL; Fu YH; Morris-Natschke SL; Hamel E; Lee KH; Hao XJ
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30935100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formal total syntheses of aspidosperma alkaloids via a novel and general synthetic pathway based on an intramolecular Heck cyclization.
    Pereira J; Barlier M; Guillou C
    Org Lett; 2007 Aug; 9(16):3101-3. PubMed ID: 17629291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential acid/base-catalyzed polycyclization of tryptamine derivatives. A rapid access to Büchi's ketone.
    Heureux N; Wouters J; Markó IE
    Org Lett; 2005 Nov; 7(23):5245-8. PubMed ID: 16268549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expeditious and Divergent Total Syntheses of Aspidosperma Alkaloids Exploiting Iridium(I)-Catalyzed Generation of Reactive Enamine Intermediates.
    Tan PW; Seayad J; Dixon DJ
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13436-13440. PubMed ID: 27659476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of cycloaddition in biosynthesis of iboga and aspidosperma alkaloids.
    Caputi L; Franke J; Bussey K; Farrow SC; Vieira IJC; Stevenson CEM; Lawson DM; O'Connor SE
    Nat Chem Biol; 2020 Apr; 16(4):383-386. PubMed ID: 32066966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.
    Eckermann R; Gaich T
    Chemistry; 2016 Apr; 22(16):5749-55. PubMed ID: 26933928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brønsted Acid-Catalyzed Tandem Cyclizations of Tryptamine-Ynamides Yielding 1H-Pyrrolo[2,3-d]carbazole Derivatives.
    Wang Y; Lin J; Wang X; Wang G; Zhang X; Yao B; Zhao Y; Yu P; Lin B; Liu Y; Cheng M
    Chemistry; 2018 Mar; 24(16):4026-4032. PubMed ID: 29168592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified synthesis of topologically diverse Aspidosperma alkaloids through divergent iminium-trapping.
    Mijangos MV; Miranda LD
    Org Biomol Chem; 2018 Dec; 16(48):9409-9419. PubMed ID: 30500039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient approach to Aspidosperma alkaloids via [4 + 2] cycloadditions of aminosiloxydienes: stereocontrolled total synthesis of (+/-)-tabersonine. Gram-scale catalytic asymmetric syntheses of (+)-tabersonine and (+)-16-methoxytabersonine. Asymmetric syntheses of (+)-aspidospermidine and (-)-quebrachamine.
    Kozmin SA; Iwama T; Huang Y; Rawal VH
    J Am Chem Soc; 2002 May; 124(17):4628-41. PubMed ID: 11971711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoterpenoid indole alkaloids isolated from the stems and twigs of Strychnos cathayensis.
    Pan QM; Li YH; Zhang JJ; Li Y; Ma SG; Yu SS
    Phytochemistry; 2022 Nov; 203():113353. PubMed ID: 36007664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concise Syntheses of bis-Strychnos Alkaloids (-)-Sungucine, (-)-Isosungucine, and (-)-Strychnogucine B from (-)-Strychnine.
    Zhao S; Teijaro CN; Chen H; Sirasani G; Vaddypally S; Zdilla MJ; Dobereiner GE; Andrade RB
    Chemistry; 2016 Aug; 22(33):11593-6. PubMed ID: 27305659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.