These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30994342)

  • 1. Synthesis, Crystal Structure Analysis, and Electrochemical Properties of Rock-Salt Type Mg
    Idemoto Y; Takahashi T; Ishida N; Nakayama M; Kitamura N
    Inorg Chem; 2019 May; 58(9):5664-5670. PubMed ID: 30994342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry.
    Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.
    Tian C; Lin F; Doeff MM
    Acc Chem Res; 2018 Jan; 51(1):89-96. PubMed ID: 29257667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemically Activated Nickel-Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel-Zinc Batteries.
    Meng L; Lin D; Wang J; Zeng Y; Liu Y; Lu X
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14854-14861. PubMed ID: 30938148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries.
    Cambaz MA; Vinayan BP; Euchner H; Pervez SA; Geßwein H; Braun T; Gross A; Fichtner M
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39848-39858. PubMed ID: 31589014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical performance of yttrium substituted LiY(x)Ni(1-x)O2 (0.00 < or = X < or = 0.20) cathode materials for rechargeable lithium-ion batteries.
    Mohan P; Kalaignan GP
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5278-82. PubMed ID: 24758016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Electrochemical Properties of LiNi
    Yin C; Zhou H; Yang Z; Li J
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13625-13634. PubMed ID: 29634238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO4 cathodes for rechargeable magnesium batteries.
    Mori T; Masese T; Orikasa Y; Huang ZD; Okado T; Kim J; Uchimoto Y
    Phys Chem Chem Phys; 2016 May; 18(19):13524-9. PubMed ID: 27140839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Properties of Na
    Saroha R; Khan TS; Chandra M; Shukla R; Panwar AK; Gupta A; Haider MA; Basu S; Dhaka RS
    ACS Omega; 2019 Jun; 4(6):9878-9888. PubMed ID: 31460078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rechargeable Aluminum-Ion Batteries Based on an Open-Tunnel Framework.
    Kaveevivitchai W; Huq A; Wang S; Park MJ; Manthiram A
    Small; 2017 Sep; 13(34):. PubMed ID: 28714242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Experimental and Computational Studies of a Na2 Ni1-x Cux Fe(CN)6 Cathode with Tunable Potential for Aqueous Rechargeable Sodium-Ion Batteries.
    Hung TF; Chou HL; Yeh YW; Chang WS; Yang CC
    Chemistry; 2015 Oct; 21(44):15686-91. PubMed ID: 26350587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.
    Xie M; Luo R; Lu J; Chen R; Wu F; Wang X; Zhan C; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Amine K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17176-83. PubMed ID: 25192293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Synthesis of Ni
    Zheng X; Han X; Liu H; Chen J; Fu D; Wang J; Zhong C; Deng Y; Hu W
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13675-13684. PubMed ID: 29616794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries.
    VahidMohammadi A; Hadjikhani A; Shahbazmohamadi S; Beidaghi M
    ACS Nano; 2017 Nov; 11(11):11135-11144. PubMed ID: 29039915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the Reversible Intercalation/Deintercalation of Al into the Novel Li
    Jiang J; Li H; Huang J; Li K; Zeng J; Yang Y; Li J; Wang Y; Wang J; Zhao J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28486-28494. PubMed ID: 28770985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystalline Domain Battery Materials.
    Zhang X; Yu H
    Acc Chem Res; 2020 Feb; 53(2):368-379. PubMed ID: 31725263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Evolution of Li
    Hwang S; Jo E; Chung KY; Hwang KS; Kim SM; Chang W
    J Phys Chem Lett; 2017 Dec; 8(23):5758-5763. PubMed ID: 29116810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.