These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
553 related articles for article (PubMed ID: 30994461)
1. Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study. Cho CH; Lee T; Kim MG; In HP; Kim L; Lee HJ J Med Internet Res; 2019 Apr; 21(4):e11029. PubMed ID: 30994461 [TBL] [Abstract][Full Text] [Related]
2. Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study. Lee HJ; Cho CH; Lee T; Jeong J; Yeom JW; Kim S; Jeon S; Seo JY; Moon E; Baek JH; Park DY; Kim SJ; Ha TH; Cha B; Kang HJ; Ahn YM; Lee Y; Lee JB; Kim L Psychol Med; 2023 Sep; 53(12):5636-5644. PubMed ID: 36146953 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of a Smartphone App With a Wearable Activity Tracker in Preventing the Recurrence of Mood Disorders: Prospective Case-Control Study. Cho CH; Lee T; Lee JB; Seo JY; Jee HJ; Son S; An H; Kim L; Lee HJ JMIR Ment Health; 2020 Aug; 7(8):e21283. PubMed ID: 32755884 [TBL] [Abstract][Full Text] [Related]
4. Causal dynamics of sleep, circadian rhythm, and mood symptoms in patients with major depression and bipolar disorder: insights from longitudinal wearable device data. Song YM; Jeong J; de Los Reyes AA; Lim D; Cho CH; Yeom JW; Lee T; Lee JB; Lee HJ; Kim JK EBioMedicine; 2024 May; 103():105094. PubMed ID: 38579366 [TBL] [Abstract][Full Text] [Related]
5. Addendum to the Acknowledgements: Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study. Cho CH; Lee T; Kim MG; In HP; Kim L; Lee HJ J Med Internet Res; 2019 Oct; 21(10):e15966. PubMed ID: 31584007 [TBL] [Abstract][Full Text] [Related]
6. Circadian rhythm sleep-wake disorders as predictors for bipolar disorder in patients with remitted mood disorders. Takaesu Y; Inoue Y; Ono K; Murakoshi A; Futenma K; Komada Y; Inoue T J Affect Disord; 2017 Oct; 220():57-61. PubMed ID: 28595099 [TBL] [Abstract][Full Text] [Related]
7. [Assessment of mood disorders by passive data gathering: The concept of digital phenotype versus psychiatrist's professional culture]. Bourla A; Ferreri F; Ogorzelec L; Guinchard C; Mouchabac S Encephale; 2018 Apr; 44(2):168-175. PubMed ID: 29096909 [TBL] [Abstract][Full Text] [Related]
8. Exploring Digital Biomarkers of Illness Activity in Mood Episodes: Hypotheses Generating and Model Development Study. Anmella G; Corponi F; Li BM; Mas A; Sanabra M; Pacchiarotti I; Valentí M; Grande I; Benabarre A; Giménez-Palomo A; Garriga M; Agasi I; Bastidas A; Cavero M; Fernández-Plaza T; Arbelo N; Bioque M; García-Rizo C; Verdolini N; Madero S; Murru A; Amoretti S; Martínez-Aran A; Ruiz V; Fico G; De Prisco M; Oliva V; Solanes A; Radua J; Samalin L; Young AH; Vieta E; Vergari A; Hidalgo-Mazzei D JMIR Mhealth Uhealth; 2023 May; 11():e45405. PubMed ID: 36939345 [TBL] [Abstract][Full Text] [Related]
9. Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study. Bai R; Xiao L; Guo Y; Zhu X; Li N; Wang Y; Chen Q; Feng L; Wang Y; Yu X; Xie H; Wang G JMIR Mhealth Uhealth; 2021 Mar; 9(3):e24365. PubMed ID: 33683207 [TBL] [Abstract][Full Text] [Related]
10. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
11. Actigraph measures discriminate pediatric bipolar disorder from attention-deficit/hyperactivity disorder and typically developing controls. Faedda GL; Ohashi K; Hernandez M; McGreenery CE; Grant MC; Baroni A; Polcari A; Teicher MH J Child Psychol Psychiatry; 2016 Jun; 57(6):706-16. PubMed ID: 26799153 [TBL] [Abstract][Full Text] [Related]
12. Association between circadian activity rhythms and mood episode relapse in bipolar disorder: a 12-month prospective cohort study. Esaki Y; Obayashi K; Saeki K; Fujita K; Iwata N; Kitajima T Transl Psychiatry; 2021 Oct; 11(1):525. PubMed ID: 34645802 [TBL] [Abstract][Full Text] [Related]
13. The prevalence and illness characteristics of DSM-5-defined "mixed feature specifier" in adults with major depressive disorder and bipolar disorder: Results from the International Mood Disorders Collaborative Project. McIntyre RS; Soczynska JK; Cha DS; Woldeyohannes HO; Dale RS; Alsuwaidan MT; Gallaugher LA; Mansur RB; Muzina DJ; Carvalho A; Kennedy SH J Affect Disord; 2015 Feb; 172():259-64. PubMed ID: 25451425 [TBL] [Abstract][Full Text] [Related]
14. Digital Biomarkers for Depression Screening With Wearable Devices: Cross-sectional Study With Machine Learning Modeling. Rykov Y; Thach TQ; Bojic I; Christopoulos G; Car J JMIR Mhealth Uhealth; 2021 Oct; 9(10):e24872. PubMed ID: 34694233 [TBL] [Abstract][Full Text] [Related]
15. Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology. Lipschitz JM; Lin S; Saghafian S; Pike CK; Burdick KE Acta Psychiatr Scand; 2024 Oct; ():. PubMed ID: 39397313 [TBL] [Abstract][Full Text] [Related]
16. Biological rhythms in bipolar and depressive disorders: A community study with drug-naïve young adults. Duarte Faria A; Cardoso Tde A; Campos Mondin T; Souza LD; Magalhaes PV; Patrick Zeni C; Silva RA; Kapczinski F; Jansen K J Affect Disord; 2015 Nov; 186():145-8. PubMed ID: 26241662 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning-Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children. Kim WP; Kim HJ; Pack SP; Lim JH; Cho CH; Lee HJ JAMA Netw Open; 2023 Mar; 6(3):e233502. PubMed ID: 36930149 [TBL] [Abstract][Full Text] [Related]
18. Chronotype and circadian rhythm in bipolar disorder: A systematic review. Melo MCA; Abreu RLC; Linhares Neto VB; de Bruin PFC; de Bruin VMS Sleep Med Rev; 2017 Aug; 34():46-58. PubMed ID: 27524206 [TBL] [Abstract][Full Text] [Related]
19. Explainable machine-learning algorithms to differentiate bipolar disorder from major depressive disorder using self-reported symptoms, vital signs, and blood-based markers. Zhu T; Liu X; Wang J; Kou R; Hu Y; Yuan M; Yuan C; Luo L; Zhang W Comput Methods Programs Biomed; 2023 Oct; 240():107723. PubMed ID: 37480646 [TBL] [Abstract][Full Text] [Related]
20. Identifying predictive factors for mood recurrence in early-onset major mood disorders: A 4-year, multicenter, prospective cohort study. Cho CH; Son S; Lee Y; Jeong J; Yeom JW; Seo JY; Moon E; Baek JH; Park DY; Kim SJ; Ha TH; Cha B; Kang HJ; Ahn YM; An H; Lee HJ Psychiatry Res; 2024 May; 335():115882. PubMed ID: 38554495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]