These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30994762)

  • 21. Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs.
    Yao N; Li L; Feng P; Feng H; Li Liu D; Liu Y; Jiang K; Hu X; Li Y
    Sci Total Environ; 2020 Feb; 704():135245. PubMed ID: 31818549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drought analysis of the Haihe river basin based on GRACE terrestrial water storage.
    Wang J; Jiang D; Huang Y; Wang H
    ScientificWorldJournal; 2014; 2014():578372. PubMed ID: 25202732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oceanic and terrestrial origin of precipitation over 50 major world river basins: Implications for the occurrence of drought.
    Sorí R; Gimeno-Sotelo L; Nieto R; Liberato MLR; Stojanovic M; Pérez-Alarcón A; Fernández-Alvarez JC; Gimeno L
    Sci Total Environ; 2023 Feb; 859(Pt 2):160288. PubMed ID: 36410478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agricultural biomass monitoring on watersheds based on remotely sensed data.
    Tamás J; Nagy A; Fehér J
    Water Sci Technol; 2015; 72(12):2212-20. PubMed ID: 26676009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the impacts of climate change on climatic extremes in the Congo River Basin.
    Karam S; Seidou O; Nagabhatla N; Perera D; Tshimanga RM
    Clim Change; 2022; 170(3-4):40. PubMed ID: 35250125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-scale assessments of droughts: A case study in Xinjiang, China.
    Yao J; Zhao Y; Chen Y; Yu X; Zhang R
    Sci Total Environ; 2018 Jul; 630():444-452. PubMed ID: 29486438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drought analysis with different indices for the Asi Basin (Turkey).
    Dikici M
    Sci Rep; 2020 Nov; 10(1):20739. PubMed ID: 33244138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drought analysis for Kuwait using standardized precipitation index.
    Almedeij J
    ScientificWorldJournal; 2014; 2014():451841. PubMed ID: 25386598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of the drought indicators system in the Júcar River Basin, Spain.
    Ortega-Gómez T; Pérez-Martín MA; Estrela T
    Sci Total Environ; 2018 Jan; 610-611():276-290. PubMed ID: 28806545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Characteristics and adaption of seasonal drought in southern China under the background of global climate change. I. Change characteristics of precipitation resource].
    Sui Y; Huang WH; Yang XG; Li MS
    Ying Yong Sheng Tai Xue Bao; 2012 Jul; 23(7):1875-82. PubMed ID: 23173462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatio-Temporal Analysis of Drought Variability Using CWSI in the Koshi River Basin (KRB).
    Wu H; Xiong D; Liu B; Zhang S; Yuan Y; Fang Y; Chidi CL; Dahal NM
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31454986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated spatiotemporal trends using TRMM 3B42 data for the Upper São Francisco River basin, Brazil.
    Santos CAG; Brasil Neto RM; da Silva RM; Passos JSA
    Environ Monit Assess; 2018 Feb; 190(3):175. PubMed ID: 29484501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index.
    Mlenga DH; Jordaan AJ
    Jamba; 2019; 11(1):712. PubMed ID: 31745406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of drought propagations with multiple indices in the Yangtze River basin.
    Um MJ; Kim Y; Jung K; Lee M; An H; Min I; Kwak J; Park D
    J Environ Manage; 2022 Sep; 317():115494. PubMed ID: 35751287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).
    Belmar O; Velasco J; Martinez-Capel F
    Environ Manage; 2011 May; 47(5):992-1004. PubMed ID: 21442295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index.
    Mlenga DH; Jordaan AJ; Mandebvu B
    Jamba; 2019; 11(1):725. PubMed ID: 31616546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple drought indices and their teleconnections with ENSO in various spatiotemporal scales over the Mekong River Basin.
    Nguyen TT; Li MH; Vu TM; Chen PY
    Sci Total Environ; 2023 Jan; 854():158589. PubMed ID: 36087676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial-temporal variability and extreme climate indices of precipitation in a coastal watershed of southeastern Brazil.
    Guarnier L; Barroso GF
    Environ Monit Assess; 2021 Oct; 193(11):742. PubMed ID: 34676453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran).
    Sadeghi SH; Hazbavi Z
    Sci Total Environ; 2017 Jun; 587-588():168-176. PubMed ID: 28249754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-sensor geodetic observations for drought characterization in the Northeast Atlantic Eastern Hydrographic Region, Brazil.
    Lima FVMS; Gonçalves RM; Montecino HD; Carvalho RAVN; Mutti PR
    Sci Total Environ; 2022 Nov; 846():157426. PubMed ID: 35863576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.