BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30994882)

  • 1. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning.
    Wei L; Zhou C; Su R; Zou Q
    Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species.
    Wei L; Luan S; Nagai LAE; Su R; Zou Q
    Bioinformatics; 2019 Apr; 35(8):1326-1333. PubMed ID: 30239627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides.
    Wei L; Zhou C; Chen H; Song J; Su R
    Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative feature representations improve N4-methylcytosine site prediction.
    Wei L; Su R; Luan S; Liao Z; Manavalan B; Zou Q; Shi X
    Bioinformatics; 2019 Dec; 35(23):4930-4937. PubMed ID: 31099381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation.
    Manavalan B; Basith S; Shin TH; Wei L; Lee G
    Bioinformatics; 2019 Aug; 35(16):2757-2765. PubMed ID: 30590410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms.
    Wei L; Hu J; Li F; Song J; Su R; Zou Q
    Brief Bioinform; 2020 Jan; 21(1):106-119. PubMed ID: 30383239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning.
    Zhang YP; Zou Q
    Bioinformatics; 2020 Jul; 36(13):3982-3987. PubMed ID: 32348463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides.
    Rao B; Zhou C; Zhang G; Su R; Wei L
    Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CPPred-RF: A Sequence-based Predictor for Identifying Cell-Penetrating Peptides and Their Uptake Efficiency.
    Wei L; Xing P; Su R; Shi G; Ma ZS; Zou Q
    J Proteome Res; 2017 May; 16(5):2044-2053. PubMed ID: 28436664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PBRpredict-Suite: a suite of models to predict peptide-recognition domain residues from protein sequence.
    Iqbal S; Hoque MT
    Bioinformatics; 2018 Oct; 34(19):3289-3299. PubMed ID: 29726965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational tools for exploring peptide-membrane interactions in gram-positive bacteria.
    Kumar S; Balaya RDA; Kanekar S; Raju R; Prasad TSK; Kandasamy RK
    Comput Struct Biotechnol J; 2023; 21():1995-2008. PubMed ID: 36950221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture.
    Cao X; He W; Chen Z; Li Y; Wang K; Zhang H; Wei L; Cui L; Su R; Wei L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTTCA-RF: a random forest predictor for tumor T cell antigens.
    Jiao S; Zou Q; Guo H; Shi L
    J Transl Med; 2021 Oct; 19(1):449. PubMed ID: 34706730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique.
    Wei L; Xing P; Shi G; Ji Z; Zou Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1264-1273. PubMed ID: 28222000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides.
    Wei L; Tang J; Zou Q
    BMC Genomics; 2017 Oct; 18(Suppl 7):742. PubMed ID: 29513192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.