These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 30994920)
1. Heat Stress Suppresses Brassica napus Seed Oil Accumulation by Inhibition of Photosynthesis and BnWRI1 Pathway. Huang R; Liu Z; Xing M; Yang Y; Wu X; Liu H; Liang W Plant Cell Physiol; 2019 Jul; 60(7):1457-1470. PubMed ID: 30994920 [TBL] [Abstract][Full Text] [Related]
2. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. Wu XL; Liu ZH; Hu ZH; Huang RZ J Integr Plant Biol; 2014 Jun; 56(6):582-93. PubMed ID: 24393360 [TBL] [Abstract][Full Text] [Related]
3. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Liu J; Hua W; Zhan G; Wei F; Wang X; Liu G; Wang H Plant Physiol Biochem; 2010 Jan; 48(1):9-15. PubMed ID: 19828328 [TBL] [Abstract][Full Text] [Related]
4. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
5. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Elhiti M; Yang C; Chan A; Durnin DC; Belmonte MF; Ayele BT; Tahir M; Stasolla C J Exp Bot; 2012 Jul; 63(12):4447-61. PubMed ID: 22563121 [TBL] [Abstract][Full Text] [Related]
6. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. Zhang Z; Dunwell JM; Zhang YM BMC Plant Biol; 2018 Dec; 18(1):328. PubMed ID: 30514240 [TBL] [Abstract][Full Text] [Related]
7. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. Liu J; Hua W; Yang HL; Zhan GM; Li RJ; Deng LB; Wang XF; Liu GH; Wang HZ J Exp Bot; 2012 Jun; 63(10):3727-40. PubMed ID: 22442419 [TBL] [Abstract][Full Text] [Related]
8. Effects of specific organs on seed oil accumulation in Brassica napus L. Liu J; Hua W; Yang H; Guo T; Sun X; Wang X; Liu G; Wang H Plant Sci; 2014 Oct; 227():60-8. PubMed ID: 25219307 [TBL] [Abstract][Full Text] [Related]
9. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Elahi N; Duncan RW; Stasolla C Plant Physiol Biochem; 2016 Mar; 100():52-63. PubMed ID: 26773545 [TBL] [Abstract][Full Text] [Related]
10. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Hua W; Li RJ; Zhan GM; Liu J; Li J; Wang XF; Liu GH; Wang HZ Plant J; 2012 Feb; 69(3):432-44. PubMed ID: 21954986 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
12. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
13. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus. Yao M; Guan M; Yang Q; Huang L; Xiong X; Jan HU; Voss-Fels KP; Werner CR; He X; Qian W; Snowdon RJ; Guan C; Hua W; Qian L Theor Appl Genet; 2021 May; 134(5):1545-1555. PubMed ID: 33677638 [TBL] [Abstract][Full Text] [Related]
14. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Tan H; Yang X; Zhang F; Zheng X; Qu C; Mu J; Fu F; Li J; Guan R; Zhang H; Wang G; Zuo J Plant Physiol; 2011 Jul; 156(3):1577-88. PubMed ID: 21562329 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related]
16. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Lian J; Lu X; Yin N; Ma L; Lu J; Liu X; Li J; Lu J; Lei B; Wang R; Chai Y Plant Sci; 2017 Jan; 254():32-47. PubMed ID: 27964783 [TBL] [Abstract][Full Text] [Related]
17. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus. Li Q; Shao J; Tang S; Shen Q; Wang T; Chen W; Hong Y Front Plant Sci; 2015; 6():1015. PubMed ID: 26635841 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of low nighttime temperature promote oil accumulation in Brassica napus L. based on in-depth transcriptome analysis. Mi C; Zhang Y; Zhao Y; Lin L Physiol Plant; 2024; 176(3):e14372. PubMed ID: 38812077 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of WAX INDUCER1/SHINE1 Gene Enhances Wax Accumulation under Osmotic Stress and Oil Synthesis in Liu N; Chen J; Wang T; Li Q; Cui P; Jia C; Hong Y Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31505838 [TBL] [Abstract][Full Text] [Related]
20. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]