BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30994940)

  • 1. Rheological and Microstructural Characteristics of Canola Protein Isolate-Chitosan Complex Coacervates.
    Chang PG; Gupta R; Timilsena YP
    J Food Sci; 2019 May; 84(5):1104-1112. PubMed ID: 30994940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of sodium chloride on the thermodynamic, rheological, and microstructural properties of field pea protein isolate/chitosan complex coacervates.
    Zhang Q; Jeganathan B; Dong H; Chen L; Vasanthan T
    Food Chem; 2021 May; 344():128569. PubMed ID: 33280960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes.
    Espinosa-Andrews H; Enríquez-Ramírez KE; García-Márquez E; Ramírez-Santiago C; Lobato-Calleros C; Vernon-Carter J
    Carbohydr Polym; 2013 Jun; 95(1):161-6. PubMed ID: 23618253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field pea protein isolate/chitosan complex coacervates: Formation and characterization.
    Zhang Q; Dong H; Gao J; Chen L; Vasanthan T
    Carbohydr Polym; 2020 Dec; 250():116925. PubMed ID: 33049839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates.
    Ghorbani Gorji S; Ghorbani Gorji E; Mohammadifar MA; Zargaraan A
    Int J Biol Macromol; 2014 Jun; 67():503-11. PubMed ID: 24565900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.
    Kolman M; Smith C; Chakrabarty D; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-healing fish gelatin/sodium montmorillonite biohybrid coacervates: structural and rheological characterization.
    Qazvini NT; Bolisetty S; Adamcik J; Mezzenga R
    Biomacromolecules; 2012 Jul; 13(7):2136-47. PubMed ID: 22642874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex coacervation of soybean protein isolate and chitosan.
    Huang GQ; Sun YT; Xiao JX; Yang J
    Food Chem; 2012 Nov; 135(2):534-9. PubMed ID: 22868125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of fish gelatin-gum arabic complex coacervates as influenced by phase separation temperature.
    Anvari M; Pan CH; Yoon WB; Chung D
    Int J Biol Macromol; 2015 Aug; 79():894-902. PubMed ID: 26054661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethylammonium chloride) versus chitosan.
    Kayitmazer AB; Strand SP; Tribet C; Jaeger W; Dubin PL
    Biomacromolecules; 2007 Nov; 8(11):3568-77. PubMed ID: 17892297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates.
    Niu F; Kou M; Fan J; Pan W; Feng ZJ; Su Y; Yang Y; Zhou W
    Food Chem; 2018 Sep; 260():1-6. PubMed ID: 29699649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates.
    Timilsena YP; Adhikari R; Barrow CJ; Adhikari B
    Int J Biol Macromol; 2016 Oct; 91():347-57. PubMed ID: 27212219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface patch binding induced intermolecular complexation and phase separation in aqueous solutions of similarly charged gelatin-chitosan molecules.
    Gupta AN; Bohidar HB; Aswal VK
    J Phys Chem B; 2007 Aug; 111(34):10137-45. PubMed ID: 17676887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological and microstructural properties of the chia seed polysaccharide.
    Timilsena YP; Adhikari R; Kasapis S; Adhikari B
    Int J Biol Macromol; 2015 Nov; 81():991-9. PubMed ID: 26416236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic strength and hydrogen bonding effects on whey protein isolate-flaxseed gum coacervate rheology.
    Liu J; Shim YY; Reaney MJT
    Food Sci Nutr; 2020 Apr; 8(4):2102-2111. PubMed ID: 32328277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gum arabic-chitosan complex coacervation.
    Espinosa-Andrews H; Báez-González JG; Cruz-Sosa F; Vernon-Carter EJ
    Biomacromolecules; 2007 Apr; 8(4):1313-8. PubMed ID: 17375951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization.
    Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN
    J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospinning Nanofibers from Chitosan/Hyaluronic Acid Complex Coacervates.
    Sun J; Perry SL; Schiffman JD
    Biomacromolecules; 2019 Nov; 20(11):4191-4198. PubMed ID: 31613600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature of protein-protein interactions during the gelation of canola protein isolate networks.
    Kim JH; Varankovich NV; Stone AK; Nickerson MT
    Food Res Int; 2016 Nov; 89(Pt 1):408-414. PubMed ID: 28460932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.