These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30994956)
1. SSDs revisited: part II-practical considerations in the development and use of application factors applied to species sensitivity distributions. Belanger SE; Carr GJ Environ Toxicol Chem; 2019 Jul; 38(7):1526-1541. PubMed ID: 30994956 [TBL] [Abstract][Full Text] [Related]
2. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models. Awkerman JA; Raimondo S; Jackson CR; Barron MG Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839 [TBL] [Abstract][Full Text] [Related]
3. Can Chemical Toxicity in Saltwater Be Predicted from Toxicity in Freshwater? A Comprehensive Evaluation Using Species Sensitivity Distributions. Yanagihara M; Hiki K; Iwasaki Y Environ Toxicol Chem; 2022 Aug; 41(8):2021-2027. PubMed ID: 35502940 [TBL] [Abstract][Full Text] [Related]
4. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids. Liu Y; Wu F; Mu Y; Feng C; Fang Y; Chen L; Giesy JP Rev Environ Contam Toxicol; 2014; 230():35-57. PubMed ID: 24609517 [TBL] [Abstract][Full Text] [Related]
5. A Chronic Aquatic Hazard Assessment for the Perfume Raw Material Octahydro-tetramethyl-naphthalenyl-ethanone. Lapczynski A; Belanger SE; Connors K; Bozich J Environ Toxicol Chem; 2024 Jun; 43(6):1378-1389. PubMed ID: 38661477 [TBL] [Abstract][Full Text] [Related]
6. Sensitivity of a Large and Representative Sample of Antarctic Marine Invertebrates to Metals. Kefford BJ; King CK; Wasley J; Riddle MJ; Nugegoda D Environ Toxicol Chem; 2019 Jul; 38(7):1560-1568. PubMed ID: 30900771 [TBL] [Abstract][Full Text] [Related]
7. Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures. Belanger S; Barron M; Craig P; Dyer S; Galay-Burgos M; Hamer M; Marshall S; Posthuma L; Raimondo S; Whitehouse P Integr Environ Assess Manag; 2017 Jul; 13(4):664-674. PubMed ID: 27531323 [TBL] [Abstract][Full Text] [Related]
8. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments. Bejarano AC; Farr JK; Jenne P; Chu V; Hielscher A Environ Toxicol Chem; 2016 Jun; 35(6):1576-86. PubMed ID: 26497000 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of in silico development of aquatic toxicity species sensitivity distributions. Barron MG; Jackson CR; Awkerman JA Aquat Toxicol; 2012 Jul; 116-117():1-7. PubMed ID: 22459408 [TBL] [Abstract][Full Text] [Related]
10. Characterizing Freshwater Ecotoxicity of More Than 9000 Chemicals by Combining Different Levels of Available Measured Test Data with In Silico Predictions. Douziech M; Oginah SA; Golsteijn L; Hauschild MZ; Jolliet O; Owsianiak M; Posthuma L; Fantke P Environ Toxicol Chem; 2024 Aug; 43(8):1914-1927. PubMed ID: 38860654 [TBL] [Abstract][Full Text] [Related]
11. Development and application of the SSD approach in scientific case studies for ecological risk assessment. Del Signore A; Hendriks AJ; Lenders HJ; Leuven RS; Breure AM Environ Toxicol Chem; 2016 Sep; 35(9):2149-61. PubMed ID: 27144499 [TBL] [Abstract][Full Text] [Related]
12. Can We Reasonably Predict Chronic Species Sensitivity Distributions from Acute Species Sensitivity Distributions? Hiki K; Iwasaki Y Environ Sci Technol; 2020 Oct; 54(20):13131-13136. PubMed ID: 32924457 [TBL] [Abstract][Full Text] [Related]
13. Development of short, acute exposure hazard estimates: a tool for assessing the effects of chemical spills in aquatic environments. Bejarano AC; Farr JK Environ Toxicol Chem; 2013 Aug; 32(8):1918-27. PubMed ID: 23625642 [TBL] [Abstract][Full Text] [Related]
14. Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions. Moore DR; Priest CD; Galic N; Brain RA; Rodney SI Integr Environ Assess Manag; 2020 Jan; 16(1):53-65. PubMed ID: 31433110 [TBL] [Abstract][Full Text] [Related]
15. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties. Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112 [TBL] [Abstract][Full Text] [Related]
16. Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria. Dyer SD; Versteeg DJ; Belanger SE; Chaney JG; Raimondo S; Barron MG Environ Sci Technol; 2008 Apr; 42(8):3076-83. PubMed ID: 18497169 [TBL] [Abstract][Full Text] [Related]
17. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China. Feng CL; Wu FC; Dyer SD; Chang H; Zhao XL Chemosphere; 2013 Jan; 90(3):1177-83. PubMed ID: 23058200 [TBL] [Abstract][Full Text] [Related]
18. Mean Species Abundance as a Measure of Ecotoxicological Risk. Hoeks S; Huijbregts MAJ; Douziech M; Hendriks AJ; Oldenkamp R Environ Toxicol Chem; 2020 Nov; 39(11):2304-2313. PubMed ID: 32786097 [TBL] [Abstract][Full Text] [Related]
19. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Posthuma L; van Gils J; Zijp MC; van de Meent D; de Zwart D Environ Toxicol Chem; 2019 Apr; 38(4):905-917. PubMed ID: 30675920 [TBL] [Abstract][Full Text] [Related]
20. Environmental benchmarks based on ecotoxicological assessment with planktonic species might not adequately protect benthic assemblages in lotic systems. Vidal T; Santos JI; Queirós L; Ré A; Abrantes N; Gonçalves FJM; Pereira JL Sci Total Environ; 2019 Jun; 668():1289-1297. PubMed ID: 31018468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]