These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30995047)

  • 1. Mechanistic Theoretical Investigation of Self-Discharge Reactions in a Vanadium Redox Flow Battery.
    Jiang Z; Klyukin K; Miller K; Alexandrov V
    J Phys Chem B; 2019 May; 123(18):3976-3983. PubMed ID: 30995047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of adsorption-desorption kinetics of aqueous V
    Jiang Z; Klyukin K; Alexandrov V
    Phys Chem Chem Phys; 2017 Jun; 19(23):14897-14901. PubMed ID: 28555224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Metadynamics Study of the VO
    Jiang Z; Klyukin K; Alexandrov V
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20621-20626. PubMed ID: 29808985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacity decay mechanism of microporous separator-based all-vanadium redox flow batteries and its recovery.
    Li B; Luo Q; Wei X; Nie Z; Thomsen E; Chen B; Sprenkle V; Wang W
    ChemSusChem; 2014 Feb; 7(2):577-84. PubMed ID: 24488680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries.
    Park JH; Park JJ; Park OO; Yang JH
    ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacity decay and remediation of nafion-based all-vanadium redox flow batteries.
    Luo Q; Li L; Wang W; Nie Z; Wei X; Li B; Chen B; Yang Z; Sprenkle V
    ChemSusChem; 2013 Feb; 6(2):268-74. PubMed ID: 23208862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.
    Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A
    ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures.
    Abbas S; Hwang J; Kim H; Chae SA; Kim JW; Mehboob S; Ahn A; Han OH; Ha HY
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26842-26853. PubMed ID: 31268664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.
    Sepehr F; Paddison SJ
    J Phys Chem A; 2015 Jun; 119(22):5749-61. PubMed ID: 25954916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Fe(III) on the positive electrolyte for vanadium redox flow battery.
    Ding M; Liu T; Zhang Y; Cai Z; Yang Y; Yuan Y
    R Soc Open Sci; 2019 Jan; 6(1):181309. PubMed ID: 30800377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries.
    Shamie JS; Liu C; Shaw LL; Sprenkle VL
    ChemSusChem; 2017 Feb; 10(3):533-540. PubMed ID: 27863095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tackling Capacity Fading in Vanadium Redox Flow Batteries with Amphoteric Polybenzimidazole/Nafion Bilayer Membranes.
    Oldenburg FJ; Nilsson E; Schmidt TJ; Gubler L
    ChemSusChem; 2019 Jun; 12(12):2620-2627. PubMed ID: 30933413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous vanadium ion dynamics relevant to bioinorganic chemistry: A review.
    Kustin K
    J Inorg Biochem; 2015 Jun; 147():32-8. PubMed ID: 25578410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Distribution in the Discharge Unit of a 10-Cell Vanadium Redox Flow Battery: Comparison of the Computational Model with Experiment.
    Glazkov A; Pichugov R; Loktionov P; Konev D; Tolstel D; Petrov M; Antipov A; Vorotyntsev MA
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolyte Imbalance Determination of a Vanadium Redox Flow Battery by Potential-Step Analysis of the Initial Charging.
    Beyer K; Grosse Austing J; Satola B; Di Nardo T; Zobel M; Agert C
    ChemSusChem; 2020 Apr; 13(8):2066-2071. PubMed ID: 31967720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Capacity Decay Studies of All-vanadium Redox Flow Batteries: Mechanism and State Estimation.
    Wang Y; Mu A; Wang W; Yang B; Wang J
    ChemSusChem; 2024 Mar; ():e202301787. PubMed ID: 38440928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable Carbon Felt Etching by Binary Nickel Bismuth Cluster for Vanadium-Manganese Redox Flow Batteries.
    Park J; Kim M; Choi J; Lee S; Han D; Bae J; Park M
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37390-37400. PubMed ID: 37498204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolyte Flow Field Variation: A Cell for Testing and Optimization of Membrane Electrode Assembly for Vanadium Redox Flow Batteries.
    Pichugov RD; Konev DV; Petrov MM; Antipov AE; Loktionov PA; Abunaeva LZ; Usenko AA; Vorotyntsev MA
    Chempluschem; 2020 Aug; 85(8):1919-1927. PubMed ID: 32856795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride supporting electrolytes for all-vanadium redox flow batteries.
    Kim S; Vijayakumar M; Wang W; Zhang J; Chen B; Nie Z; Chen F; Hu J; Li L; Yang Z
    Phys Chem Chem Phys; 2011 Oct; 13(40):18186-93. PubMed ID: 21922094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.