These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30995214)

  • 21. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Models of Dynamic Belief Updating in Psychosis-A Review Across Different Computational Approaches.
    Katthagen T; Fromm S; Wieland L; Schlagenhauf F
    Front Psychiatry; 2022; 13():814111. PubMed ID: 35492702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis.
    Strauss GP; Thaler NS; Matveeva TM; Vogel SJ; Sutton GP; Lee BG; Allen DN
    J Abnorm Psychol; 2015 Aug; 124(3):697-708. PubMed ID: 25894442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Meta attention for Off-Policy Actor-Critic.
    Huang J; Huang W; Lan L; Wu D
    Neural Netw; 2023 Jun; 163():86-96. PubMed ID: 37030278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction.
    Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y
    Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural basis of reinforcement learning and decision making.
    Lee D; Seo H; Jung MW
    Annu Rev Neurosci; 2012; 35():287-308. PubMed ID: 22462543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain signals of a Surprise-Actor-Critic model: Evidence for multiple learning modules in human decision making.
    Liakoni V; Lehmann MP; Modirshanechi A; Brea J; Lutti A; Gerstner W; Preuschoff K
    Neuroimage; 2022 Feb; 246():118780. PubMed ID: 34875383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impulse control disorders in Parkinson's disease are associated with dysfunction in stimulus valuation but not action valuation.
    Piray P; Zeighami Y; Bahrami F; Eissa AM; Hewedi DH; Moustafa AA
    J Neurosci; 2014 Jun; 34(23):7814-24. PubMed ID: 24899705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning.
    Wu Y; Morita M; Izawa J
    Neural Netw; 2022 Oct; 154():109-121. PubMed ID: 35872516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.
    Gershman SJ; Daw ND
    Annu Rev Psychol; 2017 Jan; 68():101-128. PubMed ID: 27618944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Social learning across adolescence: A Bayesian neurocognitive perspective.
    Hofmans L; van den Bos W
    Dev Cogn Neurosci; 2022 Dec; 58():101151. PubMed ID: 36183664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Computational, Pharmacological, and Physiological Determinants of Sensory Learning under Uncertainty.
    Lawson RP; Bisby J; Nord CL; Burgess N; Rees G
    Curr Biol; 2021 Jan; 31(1):163-172.e4. PubMed ID: 33188745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salience Interest Option: Temporal abstraction with salience interest functions.
    Zhu X; Zhao L; Zhu W
    Neural Netw; 2024 Aug; 176():106342. PubMed ID: 38692188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reinforcement learning and Bayesian inference provide complementary models for the unique advantage of adolescents in stochastic reversal.
    Eckstein MK; Master SL; Dahl RE; Wilbrecht L; Collins AGE
    Dev Cogn Neurosci; 2022 Jun; 55():101106. PubMed ID: 35537273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Ren G; Dong Y
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):124. PubMed ID: 32646412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
    Costa VD; Dal Monte O; Lucas DR; Murray EA; Averbeck BB
    Neuron; 2016 Oct; 92(2):505-517. PubMed ID: 27720488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexibility to contingency changes distinguishes habitual and goal-directed strategies in humans.
    Lee JJ; Keramati M
    PLoS Comput Biol; 2017 Sep; 13(9):e1005753. PubMed ID: 28957319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reward-modulated Hebbian learning of decision making.
    Pfeiffer M; Nessler B; Douglas RJ; Maass W
    Neural Comput; 2010 Jun; 22(6):1399-444. PubMed ID: 20141476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.