These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30995628)

  • 1. Cooling-field dependence of dipole-induced loop bias.
    Hu Y; Lu Q; Chi X; Zhang Z; Hu T; Li R; Yu L; Du A
    Nanotechnology; 2019 Aug; 30(32):325701. PubMed ID: 30995628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of dipole-induced exchange bias.
    Lu Q; Hu Y
    Nanotechnology; 2020 Jul; 31(30):305703. PubMed ID: 32268313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating Exchange Bias in a Van der Waals Ferromagnet.
    Wu Y; Wang W; Pan L; Wang KL
    Adv Mater; 2022 Mar; 34(12):e2105266. PubMed ID: 34910836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement and stabilization of exchange bias in ferromagnet/antiferromagnet/ferromagnet trilayers.
    Chi X; Hu Y
    Nanotechnology; 2020 Mar; 31(12):125703. PubMed ID: 31783382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of antiferromagnet on exchange bias in systems with antiferromagnetic interfacial coupling and inverted ferromagnetic-antiferromagnetic core-matrix morphology.
    Hu Y; Ma Y; Liu Y; Du A
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7343-6. PubMed ID: 21137930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study.
    Mao Z; Zhan X; Chen X
    J Phys Condens Matter; 2012 Jul; 24(27):276002. PubMed ID: 22713516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating exchange bias by spin-orbit torque.
    Lin PH; Yang BY; Tsai MH; Chen PC; Huang KF; Lin HH; Lai CH
    Nat Mater; 2019 Apr; 18(4):335-341. PubMed ID: 30778228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole-induced exchange bias.
    Torres F; Morales R; Schuller IK; Kiwi M
    Nanoscale; 2017 Nov; 9(43):17074-17079. PubMed ID: 29086780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of reentering and switching ferromagnet/antiferromagnet exchange bias by antiferromagnetic proximity effect.
    Hu Y
    Nanotechnology; 2019 Jan; 30(2):025708. PubMed ID: 30398163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature controlled switchable exchange bias and coercivity in spin glass/ferromagnet multilayers under tilting magnetizing.
    Yu L; Li R; Hu Y
    Phys Chem Chem Phys; 2020 May; 22(17):9749-9758. PubMed ID: 32330219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling exchange bias in core/shell nanoparticles.
    Iglesias O; Batlle X; Labarta A
    J Phys Condens Matter; 2007 Oct; 19(40):406232. PubMed ID: 22049130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the antiferromagnetic bulk spin structure on exchange bias.
    Morales R; Li ZP; Olamit J; Liu K; Alameda JM; Schuller IK
    Phys Rev Lett; 2009 Mar; 102(9):097201. PubMed ID: 19392557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of an antiferromagnetic exchange spring.
    Scholl A; Liberati M; Arenholz E; Ohldag H; Stöhr J
    Phys Rev Lett; 2004 Jun; 92(24):247201. PubMed ID: 15245128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Switching Mechanisms of the Antiferromagnet/Ferromagnet Heterojunction.
    Liao YC; Nikonov DE; Dutta S; Chang SC; Hsu CS; Young IA; Naeemi A
    Nano Lett; 2020 Nov; 20(11):7919-7926. PubMed ID: 33054222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of size, random field and temperature dependences of exchange bias in a core/shell magnetic nanoparticle.
    Wu MH; Li QC; Liu JM
    J Phys Condens Matter; 2007 May; 19(18):186202. PubMed ID: 21690983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Simulations of Core-Shell Ferromagnetic Bi-Magnetic Nanoparticles: The Influence of Antiferromagnetic Interfacial Exchange.
    Ramos-Guivar JA; Tamanaha-Vegas CA; Litterst FJ; Passamani EC
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34073692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero-field-cooling exchange bias up to room temperature in the strained kagome antiferromagnet Mn
    Zhao M; Guo W; Wu X; Ma L; Song P; Li G; Zhen C; Zhao D; Hou D
    Mater Horiz; 2023 Oct; 10(10):4597-4608. PubMed ID: 37593768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.
    Yüksel Y; Akıncı Ü
    J Phys Condens Matter; 2016 Dec; 28(48):486003. PubMed ID: 27689447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How a ferromagnet drives an antiferromagnet in exchange biased CoO/Fe(110) bilayers.
    Ślęzak M; Ślęzak T; Dróżdż P; Matlak B; Matlak K; Kozioł-Rachwał A; Zając M; Korecki J
    Sci Rep; 2019 Jan; 9(1):889. PubMed ID: 30696928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The exchange bias phenomenon in uncompensated interfaces: theory and Monte Carlo simulations.
    Billoni OV; Cannas SA; Tamarit FA
    J Phys Condens Matter; 2011 Sep; 23(38):386004. PubMed ID: 21900734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.