BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 30995792)

  • 1. Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism.
    Zhang L; Yao W; Xia J; Wang T; Huang F
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 30995792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism.
    Kim H; Mendez R; Chen X; Fang D; Zhang K
    Mol Cell Biol; 2015 Dec; 35(24):4121-34. PubMed ID: 26438600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism.
    von Meyenn F; Porstmann T; Gasser E; Selevsek N; Schmidt A; Aebersold R; Stoffel M
    Cell Metab; 2013 Mar; 17(3):436-47. PubMed ID: 23416070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of glucagon-like peptide-1 on glucagon secretion in patients with non-alcoholic fatty liver disease.
    Junker AE; Gluud LL; van Hall G; Holst JJ; Knop FK; Vilsbøll T
    J Hepatol; 2016 Apr; 64(4):908-15. PubMed ID: 26626496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones.
    Geisler CE; Renquist BJ
    J Endocrinol; 2017 Jul; 234(1):R1-R21. PubMed ID: 28428362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The link between Hepatic Vitamin A Metabolism and Nonalcoholic Fatty Liver Disease.
    Chen G
    Curr Drug Targets; 2015; 16(12):1281-92. PubMed ID: 25808650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD).
    Saeed A; Dullaart RPF; Schreuder TCMA; Blokzijl H; Faber KN
    Nutrients; 2017 Dec; 10(1):. PubMed ID: 29286303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Hepatic Lipid and Glucose Metabolism by INSP3R1.
    Perry RJ
    Diabetes; 2022 Sep; 71(9):1834-1841. PubMed ID: 35657697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent Role of Estrogen-Related Receptor α in Lipid- and Fasting-Induced Hepatic Steatosis in Mice.
    B'chir W; Dufour CR; Ouellet C; Yan M; Tam IS; Andrzejewski S; Xia H; Nabata K; St-Pierre J; Giguère V
    Endocrinology; 2018 May; 159(5):2153-2164. PubMed ID: 29635284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders.
    Chen Z; Wang GX; Ma SL; Jung DY; Ha H; Altamimi T; Zhao XY; Guo L; Zhang P; Hu CR; Cheng JX; Lopaschuk GD; Kim JK; Lin JD
    Mol Metab; 2017 Aug; 6(8):863-872. PubMed ID: 28752050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic Energy Metabolism under the Local Control of the Thyroid Hormone System.
    Seifert J; Chen Y; Schöning W; Mai K; Tacke F; Spranger J; Köhrle J; Wirth EK
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.
    Chow MD; Lee YH; Guo GL
    Mol Aspects Med; 2017 Aug; 56():34-44. PubMed ID: 28442273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constant hepatic ATP concentrations during prolonged fasting and absence of effects of Cerbomed Nemos
    Gancheva S; Bierwagen A; Markgraf DF; Bönhof GJ; Murphy KG; Hatziagelaki E; Lundbom J; Ziegler D; Roden M
    Mol Metab; 2018 Jan; 7():71-79. PubMed ID: 29122559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GLP-2 Dysregulates Hepatic Lipoprotein Metabolism, Inducing Fatty Liver and VLDL Overproduction in Male Hamsters and Mice.
    Taher J; Baker C; Alvares D; Ijaz L; Hussain M; Adeli K
    Endocrinology; 2018 Sep; 159(9):3340-3350. PubMed ID: 30052880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis.
    Kim K; Ryu D; Dongiovanni P; Ozcan L; Nayak S; Ueberheide B; Valenti L; Auwerx J; Pajvani UB
    Gastroenterology; 2017 Dec; 153(6):1568-1580.e10. PubMed ID: 28859855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD.
    Ashworth WB; Davies NA; Bogle ID
    PLoS Comput Biol; 2016 Sep; 12(9):e1005105. PubMed ID: 27632189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the endocrine pancreas in control of fuel metabolism by the liver during exercise.
    Wasserman DH; O'Doherty RM; Zinker BA
    Int J Obes Relat Metab Disord; 1995 Oct; 19 Suppl 4():S22-30. PubMed ID: 8581091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insecticide Exposure and Development of Nonalcoholic Fatty Liver Disease.
    Yang JS; Park Y
    J Agric Food Chem; 2018 Oct; 66(39):10132-10138. PubMed ID: 30193066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miRNA Regulation of Glucose and Lipid Metabolism in Relation to Diabetes and Non-alcoholic Fatty Liver Disease.
    Suksangrat T; Phannasil P; Jitrapakdee S
    Adv Exp Med Biol; 2019; 1134():129-148. PubMed ID: 30919335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonergic Regulation of Hepatic Energy Metabolism.
    Park J; Jeong W; Yun C; Kim H; Oh CM
    Endocrinol Metab (Seoul); 2021 Dec; 36(6):1151-1160. PubMed ID: 34911172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.