BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30995835)

  • 1. DNA Sequencing Method Including Unnatural Bases for DNA Aptamer Generation by Genetic Alphabet Expansion.
    Hamashima K; Soong YT; Matsunaga KI; Kimoto M; Hirao I
    ACS Synth Biol; 2019 Jun; 8(6):1401-1410. PubMed ID: 30995835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique Thermal Stability of Unnatural Hydrophobic Ds Bases in Double-Stranded DNAs.
    Kimoto M; Hirao I
    ACS Synth Biol; 2017 Oct; 6(10):1944-1951. PubMed ID: 28704034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolving Aptamers with Unnatural Base Pairs.
    Kimoto M; Matsunaga KI; Hirao I
    Curr Protoc Chem Biol; 2017 Dec; 9(4):315-339. PubMed ID: 29241296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sanger Gap Sequencing for Genetic Alphabet Expansion of DNA.
    Kimoto M; Soh SHG; Hirao I
    Chembiochem; 2020 Aug; 21(16):2287-2296. PubMed ID: 32202023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System.
    Kimoto M; Matsunaga K; Hirao I
    Methods Mol Biol; 2016; 1380():47-60. PubMed ID: 26552815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing Genetic Alphabet Expansion: Synthesis of 7-(2-Thienyl)-Imidazo[4,5-b]pyridine (Ds) and 4-(4-Pentyne-1,2-diol)-1-Propynyl-2-Nitropyrrole (Diol-Px) for Use in Replicable Unnatural Base Pairs for PCR Applications.
    Tan HP; Kimoto M; Hirao I
    Curr Protoc; 2024 Apr; 4(4):e1009. PubMed ID: 38572677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology.
    Hamashima K; Kimoto M; Hirao I
    Curr Opin Chem Biol; 2018 Oct; 46():108-114. PubMed ID: 30059833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Fidelity, Efficiency and Functionalization of Ds-Px Unnatural Base Pairs in PCR Amplification for a Genetic Alphabet Expansion System.
    Okamoto I; Miyatake Y; Kimoto M; Hirao I
    ACS Synth Biol; 2016 Nov; 5(11):1220-1230. PubMed ID: 26814421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly specific unnatural base pair systems as a third base pair for PCR amplification.
    Yamashige R; Kimoto M; Takezawa Y; Sato A; Mitsui T; Yokoyama S; Hirao I
    Nucleic Acids Res; 2012 Mar; 40(6):2793-806. PubMed ID: 22121213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognate base-pair selectivity of hydrophobic unnatural bases in DNA ligation by T4 DNA ligase.
    Kimoto M; Soh SHG; Tan HP; Okamoto I; Hirao I
    Biopolymers; 2021 Jan; 112(1):e23407. PubMed ID: 33156531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic alphabet expansion biotechnology by creating unnatural base pairs.
    Lee KH; Hamashima K; Kimoto M; Hirao I
    Curr Opin Biotechnol; 2018 Jun; 51():8-15. PubMed ID: 29049900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.
    Matsunaga KI; Kimoto M; Hirao I
    J Am Chem Soc; 2017 Jan; 139(1):324-334. PubMed ID: 27966933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion.
    Kimoto M; Tan HP; Tan YS; Mislan NABM; Hirao I
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220031. PubMed ID: 36633272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic alphabet expansion technology by creating unnatural base pairs.
    Kimoto M; Hirao I
    Chem Soc Rev; 2020 Nov; 49(21):7602-7626. PubMed ID: 33015699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method.
    Hirao I; Kimoto M; Lee KH
    Biochimie; 2018 Feb; 145():15-21. PubMed ID: 28916151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair.
    Ledbetter MP; Craig JM; Karadeema RJ; Noakes MT; Kim HC; Abell SJ; Huang JR; Anderson BA; Krishnamurthy R; Gundlach JH; Romesberg FE
    J Am Chem Soc; 2020 Feb; 142(5):2110-2114. PubMed ID: 31985216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma.
    Hirao I; Kimoto M
    Proc Jpn Acad Ser B Phys Biol Sci; 2012; 88(7):345-67. PubMed ID: 22850726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient unnatural base pair for PCR amplification.
    Hirao I; Mitsui T; Kimoto M; Yokoyama S
    J Am Chem Soc; 2007 Dec; 129(50):15549-55. PubMed ID: 18027940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.
    Kimoto M; Nakamura M; Hirao I
    Nucleic Acids Res; 2016 Sep; 44(15):7487-94. PubMed ID: 27387284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unnatural base pair systems for sensing and diagnostic applications.
    Kimoto M; Cox RS; Hirao I
    Expert Rev Mol Diagn; 2011 Apr; 11(3):321-31. PubMed ID: 21463241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.