These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30996284)

  • 1. Hot electron-driven electrocatalytic hydrogen evolution reaction on metal-semiconductor nanodiode electrodes.
    Nedrygailov II; Moon SY; Park JY
    Sci Rep; 2019 Apr; 9(1):6208. PubMed ID: 30996284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide.
    Kim H; Kim YJ; Jung YS; Park JY
    Nanoscale Adv; 2020 Oct; 2(10):4410-4416. PubMed ID: 36132908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot electron-driven photocatalytic water splitting.
    Hou B; Shen L; Shi H; Kapadia R; Cronin SB
    Phys Chem Chem Phys; 2017 Jan; 19(4):2877-2881. PubMed ID: 28074948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Hot Electron Generation at the Solid-Liquid Interface Is Different from the Solid-Gas Interface.
    Lee SW; Kim H; Park JY
    Nano Lett; 2023 Jun; 23(11):5373-5380. PubMed ID: 36930862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Quantum Efficiency Hot Electron Electrochemistry.
    Chae HU; Ahsan R; Lin Q; Sarkar D; Rezaeifar F; Cronin SB; Kapadia R
    Nano Lett; 2019 Sep; 19(9):6227-6234. PubMed ID: 31433658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic nanodiode: detecting continuous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction.
    Park JY; Somorjai GA
    Chemphyschem; 2006 Jul; 7(7):1409-13. PubMed ID: 16739158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode.
    Lee H; Yoon S; Jo J; Jeon B; Hyeon T; An K; Park JY
    Faraday Discuss; 2019 May; 214(0):353-364. PubMed ID: 30810549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot Electrons at Solid-Liquid Interfaces: A Large Chemoelectric Effect during the Catalytic Decomposition of Hydrogen Peroxide.
    Nedrygailov II; Lee C; Moon SY; Lee H; Park JY
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10859-62. PubMed ID: 27374493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot Electron Transport on Three-Dimensional Pt/Mesoporous TiO
    Jeon B; Lee H; Goddeti KC; Park JY
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15152-15159. PubMed ID: 30939872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes.
    Jeon B; Lee C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.
    Lee H; Nedrygailov II; Lee YK; Lee C; Choi H; Choi JS; Choi CG; Park JY
    Nano Lett; 2016 Mar; 16(3):1650-6. PubMed ID: 26910271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles.
    Lee H; Lim J; Lee C; Back S; An K; Shin JW; Ryoo R; Jung Y; Park JY
    Nat Commun; 2018 Jun; 9(1):2235. PubMed ID: 29884825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot carrier-driven catalytic reactions on Pt-CdSe-Pt nanodumbbells and Pt/GaN under light irradiation.
    Kim SM; Lee SJ; Kim SH; Kwon S; Yee KJ; Song H; Somorjai GA; Park JY
    Nano Lett; 2013 Mar; 13(3):1352-8. PubMed ID: 23428162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Onset of Hydrogen Evolution in Graphene with Hot Electrons.
    Chae HU; Ahsan R; Tao J; Cronin SB; Kapadia R
    Nano Lett; 2020 Mar; 20(3):1791-1799. PubMed ID: 32097556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing hot electron flow generated on Pt nanoparticles with Au/TiO2 Schottky diodes during catalytic CO oxidation.
    Park JY; Lee H; Renzas JR; Zhang Y; Somorjai GA
    Nano Lett; 2008 Aug; 8(8):2388-92. PubMed ID: 18572970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot-Electron-Induced Highly Efficient O2 Activation by Pt Nanoparticles Supported on Ta2O5 Driven by Visible Light.
    Sakamoto H; Ohara T; Yasumoto N; Shiraishi Y; Ichikawa S; Tanaka S; Hirai T
    J Am Chem Soc; 2015 Jul; 137(29):9324-32. PubMed ID: 26158296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation.
    Goddeti KC; Lee H; Jeon B; Park JY
    Chem Commun (Camb); 2018 Aug; 54(65):8968-8971. PubMed ID: 29987273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of Hydrogen-Related Electron Centers in Powders, Layers, and Electrodes Consisting of Anatase TiO
    Jiménez JM; Perdolt D; Berger T
    J Phys Chem C Nanomater Interfaces; 2021 Jul; 125(25):13809-13818. PubMed ID: 34239660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.