These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 309963)

  • 1. Inhibitory effects of cations on the Ca2+ response of water fibers in the frog tongue.
    Kitada Y
    Jpn J Physiol; 1978; 28(4):413-22. PubMed ID: 309963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing effects of transition metals on the salt taste responses of single fibers of the frog glossopharyngeal nerve: specificity of and similarities among Ca2+, Mg2+ and Na+ taste responses.
    Kitada Y
    Chem Senses; 1994 Jun; 19(3):265-77. PubMed ID: 8055274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative study of the inhibitory effect of Na+ and Mg2+ on the Ca2+ response of water fibers in the frog tongue.
    Kitada Y; Shimada K
    Jpn J Physiol; 1980; 30(2):219-30. PubMed ID: 6970286
    [No Abstract]   [Full Text] [Related]  

  • 4. Anions modulate cation-induced responses of single units of the frog glossopharyngeal nerve.
    Kitada Y
    Brain Res; 1995 Oct; 694(1-2):253-63. PubMed ID: 8974652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing effect of nickel ions on the response to magnesium ions of single fibers of the frog glossopharyngeal nerve: competitive inhibition by calcium ions of the nickel-enhanced response to magnesium ions.
    Kitada Y; Mitoh Y
    Chem Senses; 1997 Dec; 22(6):613-22. PubMed ID: 9455608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taste responses to electrolytes in the frog glossopharyngeal nerve: initial process of taste reception.
    Kitada Y
    Brain Res; 1990 Dec; 535(2):305-12. PubMed ID: 2073608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive inhibition of the nickel-induced response to choline by calcium ions in single water fibers of the frog glossopharyngeal nerve.
    Kitada Y
    Chem Senses; 1994 Dec; 19(6):641-50. PubMed ID: 7735843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium and octylguanidinium inhibition of monovalent cation translocation in mitochondria.
    Beaty G; Gutiérrez C; López-Vancell R; Estrada S
    Acta Physiol Pharmacol Latinoam; 1986; 36(3):217-32. PubMed ID: 3577803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of divalent cations on beta-cell electrical activity.
    Ribalet B; Beigelman PM
    Am J Physiol; 1981 Jul; 241(1):C59-67. PubMed ID: 7018263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 45Ca2+ uptake by Trichoderma viride mycelium. Correlation with growth and conidiation.
    Krystofová S; Varecka L; Betina V
    Gen Physiol Biophys; 1995 Aug; 14(4):323-7. PubMed ID: 8720696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The responses to choline ions induced by transition metal ions in single water fibers of the frog glossopharyngeal nerve.
    Kitada Y
    Chem Senses; 1994 Dec; 19(6):627-40. PubMed ID: 7735842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the contractile apparatus of skinned fibres of frog by the divalent cations barium, cadmium and nickel.
    Stephenson DG; Thieleczek R
    J Physiol; 1986 Nov; 380():75-92. PubMed ID: 3497265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Ca2+ and other divalent cations on K(+)-evoked force production of slow muscle fibers from Rana esculenta and Rana pipiens.
    Krippeit-Drews P; Schmidt H
    J Membr Biol; 1992 Aug; 129(2):211-20. PubMed ID: 1433275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion transfer characteristics of the calcium current in bull-frog atrial myocytes.
    Campbell DL; Giles WR; Shibata EF
    J Physiol; 1988 Sep; 403():239-66. PubMed ID: 2855341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of some divalent cations on synaptic transmission in frog spinal neurones.
    Alvarez-Leefmans FJ; De Santis A; Miledi R
    J Physiol; 1979 Sep; 294():387-406. PubMed ID: 229215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers.
    Donaldson SK; Kerrick WG
    J Gen Physiol; 1975 Oct; 66(4):427-44. PubMed ID: 1081122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative study of dual action of nickel ions on the taste response to calcium ions of single fibers of the frog glossopharyngeal nerve: inhibition and enhancement by nickel ions.
    Kitada Y
    Chem Senses; 1994 Oct; 19(5):401-11. PubMed ID: 7881973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-binding of Synaptosomes isolated from rat brain cortex. II. Inhibitory effects of magnesium ions and some other cations.
    Kamino K; Uyesaka N; Ogawa M; Inouye A
    J Membr Biol; 1975 Apr; 21(1-2):113-24. PubMed ID: 1195334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of sodium and potassium ions with Na+,K+-ATPase. II. General properties of ouabain-sensitive K+ binding.
    Homareda H; Matsui H
    J Biochem; 1982 Jul; 92(1):219-31. PubMed ID: 6288672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of low concentrations of divalent cations to demonstrate a role for N-methyl-D-aspartate receptors in synaptic transmission in amphibian spinal cord.
    Smith PA
    Br J Pharmacol; 1982 Oct; 77(2):363-73. PubMed ID: 6291690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.