These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30996396)

  • 21. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model.
    Keeley JE; Zedler PH
    Ecol Appl; 2009 Jan; 19(1):69-94. PubMed ID: 19323174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Full-Scale Experimental Investigation to Quantify Building Component Ignition Vulnerability from Mulch Beds Attacked by Firebrand Showers.
    Manzello SL; Suzuki S; Nii D
    Fire Technol; 2017 Mar; 53(2):535-551. PubMed ID: 28184098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.
    Lecina-Diaz J; Alvarez A; Retana J
    PLoS One; 2014; 9(1):e85127. PubMed ID: 24465492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors Affecting the Behavior of Large Forest Fires in Turkey.
    Daşdemir İ; Aydın F; Ertuğrul M
    Environ Manage; 2021 Jan; 67(1):162-175. PubMed ID: 33200252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study on soil fire temperature field of harvested site of Larix olgensis plantation.
    Xue W; Sha C; Zhang HC; Guo Y
    Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):785-792. PubMed ID: 30912370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experiments on the influence of spot fire and topography interaction on fire rate of spread.
    Storey MA; Price OF; Almeida M; Ribeiro C; Bradstock RA; Sharples JJ
    PLoS One; 2021; 16(1):e0245132. PubMed ID: 33411769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].
    Zhang JL; Liu BF; Chu TF; Di XY; Jin S
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1495-502. PubMed ID: 22937636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of arson fires on survivability of entomological evidence on carcasses inside vehicle trunks.
    Malainey SL; Anderson GS
    Forensic Sci Int; 2020 Jan; 306():110033. PubMed ID: 31812085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Burning rate of merged pool fire on the hollow square tray.
    Wang C; Guo J; Ding Y; Wen J; Lu S
    J Hazard Mater; 2015 Jun; 290():78-86. PubMed ID: 25746567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.
    Fuentes-Ramirez A; Veldman JW; Holzapfel C; Moloney KA
    Ecol Appl; 2016 Oct; 26(7):2311-2322. PubMed ID: 27755715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring how fire spread mode shapes the composition of pyrogenic carbon from burning forest litter fuels in a combustion wind tunnel.
    Surawski NC; Macdonald LM; Baldock JA; Sullivan AL; Roxburgh SH; Polglase PJ
    Sci Total Environ; 2020 Jan; 698():134306. PubMed ID: 31783449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.
    Modugno S; Balzter H; Cole B; Borrelli P
    J Environ Manage; 2016 May; 172():112-26. PubMed ID: 26922502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990-2013).
    Fox DM; Carrega P; Ren Y; Caillouet P; Bouillon C; Robert S
    Sci Total Environ; 2018 Apr; 621():120-129. PubMed ID: 29179067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].
    Jin S; Liu BF; Di XY; Chu TF; Zhang JL
    Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):51-9. PubMed ID: 22489479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding Structure Ignition Vulnerabilities Using Mock-up Sections of Attached Wood Fencing Assemblies.
    Suzuki S; Manzello SL
    Fire Mater; 2019; 43():. PubMed ID: 31579348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafine and respirable particle exposure during vehicle fire suppression.
    Evans DE; Fent KW
    Environ Sci Process Impacts; 2015 Oct; 17(10):1749-59. PubMed ID: 26308547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Summary of Workshop Large Outdoor Fires and the Built Environment.
    Manzello SL; Blanchi R; Gollner MJ; Gorham D; McAllister S; Pastor E; Planas E; Reszka P; Suzuki S
    Fire Saf J; 2018; 100():. PubMed ID: 30983689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the effects of different fuel treatment mosaics on wildfire spread and behavior in a Mediterranean agro-pastoral area.
    Salis M; Del Giudice L; Arca B; Ager AA; Alcasena-Urdiroz F; Lozano O; Bacciu V; Spano D; Duce P
    J Environ Manage; 2018 Apr; 212():490-505. PubMed ID: 29475158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustained combustion of an animal carcass and its implications for the consumption of human bodies in fires.
    DeHaan JD; Nurbakhsh S
    J Forensic Sci; 2001 Sep; 46(5):1076-81. PubMed ID: 11569545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.