These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30996503)

  • 1. The role of atmospheric internal variability on the prediction skill of interannual North Pacific sea-surface temperatures.
    Narapusetty B
    Theor Appl Climatol; 2018; 133(1):113-121. PubMed ID: 30996503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
    Ma X; Chang P; Saravanan R; Montuoro R; Hsieh JS; Wu D; Lin X; Wu L; Jing Z
    Sci Rep; 2015 Dec; 5():17785. PubMed ID: 26635077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea surface temperature (SST) and SST anomaly (SSTA) datasets over the last four decades (1977-2016) during typhoon season (May to November) in the entire Global Ocean, North Pacific Ocean, Philippine Sea, South China sea, and Eastern China Sea.
    Pandey RS; Liou YA
    Data Brief; 2022 Dec; 45():108646. PubMed ID: 36426025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea surface temperature variability: patterns and mechanisms.
    Deser C; Alexander MA; Xie SP; Phillips AS
    Ann Rev Mar Sci; 2010; 2():115-43. PubMed ID: 21141660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An examination of the Northern Hemisphere mid-latitude storm track interannual variability simulated by climate models-sensitivity to model resolution and coupling.
    Feng X; Huang B; Tintera G; Chen B
    Clim Dyn; 2019; 52(7):4247-4268. PubMed ID: 31007411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocean eddies and climate predictability.
    Kirtman BP; Perlin N; Siqueira L
    Chaos; 2017 Dec; 27(12):126902. PubMed ID: 29289056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of subsurface ocean in decadal climate predictability over the South Atlantic.
    Morioka Y; Doi T; Storto A; Masina S; Behera SK
    Sci Rep; 2018 Jun; 8(1):8523. PubMed ID: 29867150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing decadal-scale climate prediction in the North Atlantic sector.
    Keenlyside NS; Latif M; Jungclaus J; Kornblueh L; Roeckner E
    Nature; 2008 May; 453(7191):84-8. PubMed ID: 18451859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved decadal climate prediction in the North Atlantic using EnOI-assimilated initial condition.
    Wei M; Li Q; Xin X; Zhou W; Han Z; Luo Y; Zhao Z
    Sci Bull (Beijing); 2017 Aug; 62(16):1142-1147. PubMed ID: 36659345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal to annual ocean forecasting skill and the role of model and observational uncertainty.
    Juricke S; MacLeod D; Weisheimer A; Zanna L; Palmer TN
    Q J R Meteorol Soc; 2018 Jul; 144(715):1947-1964. PubMed ID: 31031424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric controls on northeast Pacific temperature variability and change, 1900-2012.
    Johnstone JA; Mantua NJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14360-5. PubMed ID: 25246555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global and Arctic climate sensitivity enhanced by changes in North Pacific heat flux.
    Praetorius S; Rugenstein M; Persad G; Caldeira K
    Nat Commun; 2018 Aug; 9(1):3124. PubMed ID: 30087327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE.
    Vijith V; Vinayachandran PN; Webber BGM; Matthews AJ; George JV; Kannaujia VK; Lotliker AA; Amol P
    Sci Rep; 2020 Apr; 10(1):7062. PubMed ID: 32341370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pacific decadal oscillation hindcasts relevant to near-term climate prediction.
    Mochizuki T; Ishii M; Kimoto M; Chikamoto Y; Watanabe M; Nozawa T; Sakamoto TT; Shiogama H; Awaji T; Sugiura N; Toyoda T; Yasunaka S; Tatebe H; Mori M
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):1833-7. PubMed ID: 20080684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold- versus warm-season-forced variability of the Kuroshio and North Pacific subtropical mode water.
    Kawakami Y; Nakano H; Urakawa LS; Toyoda T; Sakamoto K; Yamanaka G; Sugimoto S
    Sci Rep; 2023 Jan; 13(1):256. PubMed ID: 36604435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictability of phases and magnitudes of natural decadal climate variability phenomena in CMIP5 experiments with the UKMO HadCM3, GFDL-CM2.1, NCAR-CCSM4, and MIROC5 global earth system models.
    Mehta VM; Mendoza K; Wang H
    Clim Dyn; 2019; 52(5):3255-3275. PubMed ID: 30956408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocean variability and air-sea fluxes produced by atmospheric rivers.
    Shinoda T; Zamudio L; Guo Y; Metzger EJ; Fairall CW
    Sci Rep; 2019 Feb; 9(1):2152. PubMed ID: 30770858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observational evidence of European summer weather patterns predictable from spring.
    Ossó A; Sutton R; Shaffrey L; Dong B
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):59-63. PubMed ID: 29255052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indian summer monsoon variability forecasts in the North American multimodel ensemble.
    Singh B; Cash B; Kinter Iii JL
    Clim Dyn; 2019; 53(12):7321-7334. PubMed ID: 31929686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of sea surface temperature to atmospheric rivers.
    Hsu TY; Mazloff MR; Gille ST; Freilich MA; Sun R; Cornuelle BD
    Nat Commun; 2024 Jun; 15(1):5018. PubMed ID: 38866745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.