These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
661 related articles for article (PubMed ID: 30996585)
1. A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion. Cheng B; Lane B; Whiting J; Chou K J Manuf Sci Eng; 2018; 140():. PubMed ID: 30996585 [TBL] [Abstract][Full Text] [Related]
2. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing. Zhang S; Lane B; Whiting J; Chou K J Manuf Process; 2019; 47():. PubMed ID: 32855624 [TBL] [Abstract][Full Text] [Related]
3. Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis. Habiba U; Hebert RJ Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834631 [TBL] [Abstract][Full Text] [Related]
4. Numerical Simulation of Temperature Characteristics and Graphitization Mechanism of Diamond in Laser Powder Bed Fusion. Chen Y; Zhang S; Liu J; Zhang W; Ma Q; Wu X; Guo S; Cui Y; Li X; Zheng B; Cui L Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763614 [TBL] [Abstract][Full Text] [Related]
5. Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation. Ur Rehman A; Mahmood MA; Pitir F; Salamci MU; Popescu AC; Mihailescu IN Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947634 [TBL] [Abstract][Full Text] [Related]
6. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384 [TBL] [Abstract][Full Text] [Related]
7. Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing. Smith CJ; Tammas-Williams S; Hernandez-Nava E; Todd I Sci Rep; 2017 Sep; 7(1):10514. PubMed ID: 28874795 [TBL] [Abstract][Full Text] [Related]
8. Laser Powder Bed Fusion of Copper-Tungsten Powders Manufactured by Milling or Co-Injection Atomization Process. Rauh S; Prabhu SD; Wolf G; Fischer L; Hempel N; Mayr P Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274783 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of Ti Li K; Wang X; Chen H; Huang X; Zhu G; Tu G Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049002 [TBL] [Abstract][Full Text] [Related]
10. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion. Xing LL; Zhang WJ; Zhao CC; Gao WQ; Shen ZJ; Liu W Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33924888 [TBL] [Abstract][Full Text] [Related]
11. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process. Fu G; Zhang DZ; He AN; Mao Z; Zhang K Materials (Basel); 2018 May; 11(5):. PubMed ID: 29748473 [TBL] [Abstract][Full Text] [Related]
12. Thermophysical Properties of Laser Powder Bed Fused Ti-6Al-4V and AlSi10Mg Alloys Made with Varying Laser Parameters. Akwaboa S; Zeng C; Amoafo-Yeboah N; Ibekwe S; Mensah P Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512194 [TBL] [Abstract][Full Text] [Related]
13. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size. Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502 [TBL] [Abstract][Full Text] [Related]
14. Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical properties. Bergmueller S; Kaserer L; Fuchs L; Braun J; Weinberger N; Letofsky-Papst I; Leichtfried G Heliyon; 2022 Aug; 8(8):e10171. PubMed ID: 36033262 [TBL] [Abstract][Full Text] [Related]
15. Residual Stress Formation Mechanisms in Laser Powder Bed Fusion-A Numerical Evaluation. Kaess M; Werz M; Weihe S Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984200 [TBL] [Abstract][Full Text] [Related]
16. A new variant of the inherent strain method for the prediction of distortion in powder bed fusion additive manufacturing processes. Pourabdollah P; Farhang Mehr F; Cockcroft S; Maijer D Int J Adv Manuf Technol; 2024; 131(9-10):4575-4594. PubMed ID: 38559377 [TBL] [Abstract][Full Text] [Related]
17. Effects of Low-Temperature Heat Treatment on Mechanical and Thermophysical Properties of Cu-10Sn Alloys Fabricated by Laser Powder Bed Fusion. Honu E; Emanet S; Chen Y; Zeng C; Mensah P Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930311 [TBL] [Abstract][Full Text] [Related]
18. Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method. Habiba U; Hebert RJ Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049118 [TBL] [Abstract][Full Text] [Related]
19. Support Structures Optimisation for High-Quality Metal Additive Manufacturing with Laser Powder Bed Fusion: A Numerical Simulation Study. Dimopoulos A; Salimi M; Gan TH; Chatzakos P Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005093 [TBL] [Abstract][Full Text] [Related]
20. Analytical Thermal Modeling of Powder Bed Metal Additive Manufacturing Considering Powder Size Variation and Packing. Ning J; Wang W; Ning X; Sievers DE; Garmestani H; Liang SY Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]