BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 30996585)

  • 1. A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion.
    Cheng B; Lane B; Whiting J; Chou K
    J Manuf Sci Eng; 2018; 140():. PubMed ID: 30996585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
    Zhang S; Lane B; Whiting J; Chou K
    J Manuf Process; 2019; 47():. PubMed ID: 32855624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis.
    Habiba U; Hebert RJ
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation of Temperature Characteristics and Graphitization Mechanism of Diamond in Laser Powder Bed Fusion.
    Chen Y; Zhang S; Liu J; Zhang W; Ma Q; Wu X; Guo S; Cui Y; Li X; Zheng B; Cui L
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation.
    Ur Rehman A; Mahmood MA; Pitir F; Salamci MU; Popescu AC; Mihailescu IN
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing.
    Smith CJ; Tammas-Williams S; Hernandez-Nava E; Todd I
    Sci Rep; 2017 Sep; 7(1):10514. PubMed ID: 28874795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Ti
    Li K; Wang X; Chen H; Huang X; Zhu G; Tu G
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion.
    Xing LL; Zhang WJ; Zhao CC; Gao WQ; Shen ZJ; Liu W
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33924888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process.
    Fu G; Zhang DZ; He AN; Mao Z; Zhang K
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29748473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermophysical Properties of Laser Powder Bed Fused Ti-6Al-4V and AlSi10Mg Alloys Made with Varying Laser Parameters.
    Akwaboa S; Zeng C; Amoafo-Yeboah N; Ibekwe S; Mensah P
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical properties.
    Bergmueller S; Kaserer L; Fuchs L; Braun J; Weinberger N; Letofsky-Papst I; Leichtfried G
    Heliyon; 2022 Aug; 8(8):e10171. PubMed ID: 36033262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual Stress Formation Mechanisms in Laser Powder Bed Fusion-A Numerical Evaluation.
    Kaess M; Werz M; Weihe S
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new variant of the inherent strain method for the prediction of distortion in powder bed fusion additive manufacturing processes.
    Pourabdollah P; Farhang Mehr F; Cockcroft S; Maijer D
    Int J Adv Manuf Technol; 2024; 131(9-10):4575-4594. PubMed ID: 38559377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Support Structures Optimisation for High-Quality Metal Additive Manufacturing with Laser Powder Bed Fusion: A Numerical Simulation Study.
    Dimopoulos A; Salimi M; Gan TH; Chatzakos P
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Low-Temperature Heat Treatment on Mechanical and Thermophysical Properties of Cu-10Sn Alloys Fabricated by Laser Powder Bed Fusion.
    Honu E; Emanet S; Chen Y; Zeng C; Mensah P
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method.
    Habiba U; Hebert RJ
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical Thermal Modeling of Powder Bed Metal Additive Manufacturing Considering Powder Size Variation and Packing.
    Ning J; Wang W; Ning X; Sievers DE; Garmestani H; Liang SY
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Laser Powder Bed Fusion Parameters for IN-738LC by Response Surface Method.
    Vilanova M; Escribano-GarcĂ­a R; Guraya T; San Sebastian M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.