These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
661 related articles for article (PubMed ID: 30996585)
21. Optimizing Laser Powder Bed Fusion Parameters for IN-738LC by Response Surface Method. Vilanova M; Escribano-García R; Guraya T; San Sebastian M Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143154 [TBL] [Abstract][Full Text] [Related]
22. Measurement and the improvement of effective thermal conductivity for a metal hydride bed - a review. Ye J; Li Z; Zhang L; Wang S; Jiang L RSC Adv; 2022 Sep; 12(39):25722-25743. PubMed ID: 36199307 [TBL] [Abstract][Full Text] [Related]
24. An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion. Mukherjee S; Benavidez E; Crumb M; Calta NP Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257616 [TBL] [Abstract][Full Text] [Related]
25. Achieving Triply Periodic Minimal Surface Thin-Walled Structures by Micro Laser Powder Bed Fusion Process. Qu S; Ding J; Song X Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34208614 [TBL] [Abstract][Full Text] [Related]
26. Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion. Ewald S; Kies F; Hermsen S; Voshage M; Haase C; Schleifenbaum JH Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130684 [TBL] [Abstract][Full Text] [Related]
27. 3D Modeling of the Solidification Structure Evolution and of the Inter Layer/Track Voids Formation in Metallic Alloys Processed by Powder Bed Fusion Additive Manufacturing. Nastac L Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556692 [TBL] [Abstract][Full Text] [Related]
28. On the Fabrication of High-Performance Additively Manufactured Copper Winding Using Laser Powder Bed Fusion. Abdelhafiz M; Emadi A; Elbestawi MA Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445006 [TBL] [Abstract][Full Text] [Related]
29. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Yeung H; Lane B; Fox J Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600 [TBL] [Abstract][Full Text] [Related]
30. Additive Manufacturing of Cu Using Graphene-Oxide-Treated Powder. Tidén S; Taher M; Vennström M; Jansson U Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569920 [TBL] [Abstract][Full Text] [Related]
31. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion. Lane B; Whitenton E; Moylan S Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of Crack-Free Nickel-Based Superalloy Considered Non-Weldable during Laser Powder Bed Fusion. Sanchez-Mata O; Wang X; Muñiz-Lerma JA; Attarian Shandiz M; Gauvin R; Brochu M Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30046019 [TBL] [Abstract][Full Text] [Related]
33. Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process. Xu L; Zhang Y; Zhao L; Ren W; Han Y Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591431 [TBL] [Abstract][Full Text] [Related]
34. Laser flash method for measuring thermal conductivity of liquids-application to low thermal conductivity liquids. Tada Y; Harada M; Tanigaki M; Eguchi W Rev Sci Instrum; 1978 Sep; 49(9):1305. PubMed ID: 18699307 [TBL] [Abstract][Full Text] [Related]
35. Fused Filament Fabrication of NiTi Components and Hybridization with Laser Powder Bed Fusion for Filigree Structures. Abel J; Mannschatz A; Teuber R; Müller B; Al Noaimy O; Riecker S; Thielsch J; Matthey B; Weißgärber T Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442922 [TBL] [Abstract][Full Text] [Related]
36. Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg. Van Cauwenbergh P; Samaee V; Thijs L; Nejezchlebová J; Sedlák P; Iveković A; Schryvers D; Van Hooreweder B; Vanmeensel K Sci Rep; 2021 Mar; 11(1):6423. PubMed ID: 33742014 [TBL] [Abstract][Full Text] [Related]
37. High-Temperature Mechanical Properties of Stress-Relieved AlSi10Mg Produced via Laser Powder Bed Fusion Additive Manufacturing. Lehmhus D; Rahn T; Struss A; Gromzig P; Wischeropp T; Becker H Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295451 [TBL] [Abstract][Full Text] [Related]
38. Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders. Shoji Aota L; Bajaj P; Zschommler Sandim HR; Aimé Jägle E Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899864 [TBL] [Abstract][Full Text] [Related]
39. Data on a computationally efficient approximation of part-powder conduction as surface free convection in powder bed fusion process modelling. Zhang W; Tong M; Harrison NM Data Brief; 2019 Dec; 27():104559. PubMed ID: 31656832 [TBL] [Abstract][Full Text] [Related]
40. Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion. Lin HY; Tran HC; Lo YL; Le TN; Chiu KC; Hsu YY 3D Print Addit Manuf; 2023 Aug; 10(4):732-748. PubMed ID: 37609594 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]