These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30996882)

  • 1. Tunable enzyme responses in amphiphilic nanoassemblies through alterations in the unimer-aggregate equilibrium.
    Gao J; Wang H; Zhuang J; Thayumanavan S
    Chem Sci; 2019 Mar; 10(10):3018-3024. PubMed ID: 30996882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli.
    Raghupathi KR; Guo J; Munkhbat O; Rangadurai P; Thayumanavan S
    Acc Chem Res; 2014 Jul; 47(7):2200-11. PubMed ID: 24937682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation of Enzyme-Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response.
    Zhuang J; Seçinti H; Zhao B; Thayumanavan S
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7111-7115. PubMed ID: 29635858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using High Molecular Precision to Study Enzymatically Induced Disassembly of Polymeric Nanocarriers: Direct Enzymatic Activation or Equilibrium-Based Degradation?
    Slor G; Amir RJ
    Macromolecules; 2021 Feb; 54(4):1577-1588. PubMed ID: 33642615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivation of Ligands for Extrinsically and Intrinsically Triggered Disassembly of Amphiphilic Nanoassemblies.
    Gao J; Liu X; Secinti H; Jiang Z; Munkhbat O; Xu Y; Guo X; Thayumanavan S
    Chemistry; 2018 Feb; 24(8):1789-1794. PubMed ID: 29314349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies.
    Liu H; Lu HH; Alp Y; Wu R; Thayumanavan S
    Prog Polym Sci; 2024 Jan; 148():. PubMed ID: 38476148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-Assemblies of Modified Cyclodextrins and Their Complexes with Guest Molecules: Incorporation in Nanostructured Membranes and Amphiphile Nanoarchitectonics Design.
    Zerkoune L; Angelova A; Lesieur S
    Nanomaterials (Basel); 2014 Aug; 4(3):741-765. PubMed ID: 28344245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-induced supramolecular disassembly of amphiphilic polypeptide nanoassemblies.
    Molla MR; Prasad P; Thayumanavan S
    J Am Chem Soc; 2015 Jun; 137(23):7286-9. PubMed ID: 26020143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview from simple host-guest systems to progressively complex supramolecular assemblies.
    Sayed M; Pal H
    Phys Chem Chem Phys; 2021 Dec; 23(46):26085-26107. PubMed ID: 34787121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Aromatic Interactions in Temperature-Sensitive Amphiphilic Supramolecular Assemblies.
    Munkhbat O; Garzoni M; Raghupathi KR; Pavan GM; Thayumanavan S
    Langmuir; 2016 Mar; 32(12):2874-81. PubMed ID: 26938461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing lipophilic ligands in dendrimer-based amphiphilic supramolecular assemblies for protein-induced disassembly.
    Yesilyurt V; Ramireddy R; Azagarsamy MA; Thayumanavan S
    Chemistry; 2012 Jan; 18(1):223-9. PubMed ID: 22127994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-tuning amphiphility of host-guest Alginate-based supramolecular assemblies for photo-responsive Pickering emulsions.
    Zhao X; Fang X; Yang S; Zhang S; Yu G; Liu Y; Zhou Y; Feng Y; Li J
    Carbohydr Polym; 2021 Jan; 251():117072. PubMed ID: 33142617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding functional group and assembly dynamics in temperature responsive systems leads to design principles for enzyme responsive assemblies.
    Liu H; Lionello C; Westley J; Cardellini A; Huynh U; Pavan GM; Thayumanavan S
    Nanoscale; 2021 Jul; 13(26):11568-11575. PubMed ID: 34190280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer-Aggregate Equilibrium.
    Tao Y; Ma X; Cai Y; Liu L; Zhao H
    J Phys Chem B; 2018 Apr; 122(14):3900-3907. PubMed ID: 29558140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent encapsulation stabilities in supramolecular nanoassemblies.
    Jiwpanich S; Ryu JH; Bickerton S; Thayumanavan S
    J Am Chem Soc; 2010 Aug; 132(31):10683-5. PubMed ID: 20681699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architectural Change of the Shell-Forming Block from Linear to V-Shaped Accelerates Micellar Disassembly, but Slows the Complete Enzymatic Degradation of the Amphiphiles.
    Segal M; Ozery L; Slor G; Wagle SS; Ehm T; Beck R; Amir RJ
    Biomacromolecules; 2020 Oct; 21(10):4076-4086. PubMed ID: 32833437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and Triggered Evolution of Host-Guest Characteristics in Amphiphilic Polymer Assemblies.
    Rangadurai P; Molla MR; Prasad P; Caissy M; Thayumanavan S
    J Am Chem Soc; 2016 Jun; 138(24):7508-11. PubMed ID: 27258854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications.
    Liu Z; Lin W; Liu Y
    Acc Chem Res; 2022 Dec; 55(23):3417-3429. PubMed ID: 36380600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-Induced Architectural Transition as a Tool for Controlling the Enzymatic Degradability of Polymeric Micelles.
    Slor G; Tevet S; Amir RJ
    ACS Polym Au; 2022 Oct; 2(5):380-386. PubMed ID: 36855583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible assembly and disassembly of amphiphilic assemblies by electropolymerized polyaniline films: effects rendered by varying the electropolymerization potential.
    Dutta K; Kundu PP
    J Phys Chem B; 2013 Jun; 117(25):7797-805. PubMed ID: 23772868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.