These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 30996972)
1. Achieving efficient and robust catalytic reforming on dual-sites of Cu species. Ma K; Tian Y; Zhao ZJ; Cheng Q; Ding T; Zhang J; Zheng L; Jiang Z; Abe T; Tsubaki N; Gong J; Li X Chem Sci; 2019 Mar; 10(9):2578-2584. PubMed ID: 30996972 [TBL] [Abstract][Full Text] [Related]
2. Achieving efficient almost CO-free hydrogen production from methanol steam reforming on Cu modified α-MoC. Jiang W; Liu A; Yao M; Zhang Y; Fu P RSC Adv; 2024 Jan; 14(3):2036-2047. PubMed ID: 38205234 [TBL] [Abstract][Full Text] [Related]
3. Designing Cu Meng H; Yang Y; Shen T; Yin Z; Wang L; Liu W; Yin P; Ren Z; Zheng L; Zhang J; Xiao FS; Wei M Nat Commun; 2023 Dec; 14(1):7980. PubMed ID: 38042907 [TBL] [Abstract][Full Text] [Related]
4. Stable Cu/Cu Lu M; Zheng Z; Lu W; Zhu H; Liao J; Ge Y; Huang X; Zhang Q; Li J; Zhou Y; Wu X; Chen B; Yang C; Qian X; Shao M; Wang T ACS Nano; 2024 Sep; 18(37):25636-25646. PubMed ID: 39235312 [TBL] [Abstract][Full Text] [Related]
5. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts. Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, characterization, and methanol steam reforming performance of Cu/perovskite-structured catalysts. Mortazavi-Manesh A; Safari N; Bahadoran F; Khani Y Heliyon; 2023 Mar; 9(3):e13742. PubMed ID: 36873539 [TBL] [Abstract][Full Text] [Related]
7. Light-Induced Dynamic Restructuring of Cu Active Sites on TiO Luo S; Song H; Ichihara F; Oshikiri M; Lu W; Tang DM; Li S; Li Y; Li Y; Davin P; Kako T; Lin H; Ye J J Am Chem Soc; 2023 Sep; 145(37):20530-20538. PubMed ID: 37677133 [TBL] [Abstract][Full Text] [Related]
8. Triggering Water and Methanol Activation for Solar-Driven H Luo S; Lin H; Wang Q; Ren X; Hernández-Pinilla D; Nagao T; Xie Y; Yang G; Li S; Song H; Oshikiri M; Ye J J Am Chem Soc; 2021 Aug; 143(31):12145-12153. PubMed ID: 34324341 [TBL] [Abstract][Full Text] [Related]
9. Performance of Cu/ZnO Nanosheets on Electrospun Al Maor II; Heyte S; Elishav O; Mann-Lahav M; Thuriot-Roukos J; Paul S; Grader GS Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839003 [TBL] [Abstract][Full Text] [Related]
10. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process. Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526 [TBL] [Abstract][Full Text] [Related]
11. Comparative study on the catalytic steam reforming of biomass pyrolysis oil and its derivatives for hydrogen production. Fu P; Zhang A; Luo S; Yi W; Zhang Y RSC Adv; 2020 Mar; 10(22):12721-12729. PubMed ID: 35492111 [TBL] [Abstract][Full Text] [Related]
12. First-principles-based microkinetic modeling of methanol steam reforming over Cu(111) and Cu(211): structure sensitive activity and selectivity. Zhang X; Yang B Dalton Trans; 2024 Oct; 53(42):17190-17199. PubMed ID: 39373753 [TBL] [Abstract][Full Text] [Related]
13. Identifying the catalyst chemical state and adsorbed species during methanol conversion on copper using ambient pressure X-ray spectroscopies. Eren B; Sole CG; Lacasa JS; Grinter D; Venturini F; Held G; Esconjauregui CS; Weatherup RS Phys Chem Chem Phys; 2020 Sep; 22(34):18806-18814. PubMed ID: 32242587 [TBL] [Abstract][Full Text] [Related]
14. Cu/ZnO Catalysts Derived from Bimetallic Metal-Organic Framework for Dimethyl Ether Synthesis from Syngas with Enhanced Selectivity and Stability. Li F; Ao M; Pham GH; Sunarso J; Chen Y; Liu J; Wang K; Liu S Small; 2020 Apr; 16(14):e1906276. PubMed ID: 32130789 [TBL] [Abstract][Full Text] [Related]
15. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. Lim KH; Chen ZX; Neyman KM; Rösch N J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600 [TBL] [Abstract][Full Text] [Related]
16. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts. Calles JA; Carrero A; Vizcaíno AJ; García-Moreno L; Megía PJ Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30691053 [TBL] [Abstract][Full Text] [Related]
17. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors. Ghasem N Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702 [TBL] [Abstract][Full Text] [Related]
18. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
19. Resource utilization of waste V Jin Q; Shen Y; Cai Y; Chu L; Zeng Y J Hazard Mater; 2020 Jan; 381():120934. PubMed ID: 31374373 [TBL] [Abstract][Full Text] [Related]
20. Metal-Support Interaction-Promoted Photothermal Catalytic Methane Reforming into Liquid Fuels. Zhou P; Navid IA; Xiao Y; Ye Z; Dong WJ; Wang P; Sun K; Mi Z J Phys Chem Lett; 2022 Sep; 13(34):8122-8129. PubMed ID: 35998363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]